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Learning and Predictability via Technical Analysis:

Evidence from Bitcoin and Stocks with Hard-to-Value

Fundamentals

Abstract

What predicts returns on assets with “hard-to-value” fundamentals, such as Bitcoin and
stocks in new industries? We propose an equilibrium model that shows how rational
learning enables return predictability through technical analysis. We document that
ratios of prices to their moving averages forecast daily Bitcoin returns in- and out-of-
sample. Trading strategies based on these ratios generate an economically significant
alpha and Sharpe ratio gains relative to a buy-and-hold position. Similar results hold
for small-cap stocks, especially those with low analyst coverage, and NASDAQ stocks
during the dotcom era.

JEL classification: G11, G12, G14
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1. Introduction

Cryptocurrencies’ fundamental source of intrinsic value remains unclear. Market observers disagree

about their ability to serve as a currency and their currency status faces significant regulatory risk.

Moreover, unlike cash flows from more typical financial assets such as stocks and bonds, cryp-

tocurrencies’ fundamentals have few, if any, publicly available predictive signals, such as analyst

coverage and accounting statements. We refer to fundamentals with these characteristics of uncer-

tainty, opacity, disagreement, and lack of predictive information as “hard-to-value”. In this paper,

we theoretically and empirically examine the asset-pricing implications of having such fundamen-

tals. While cryptocurrencies are the ideal setting to investigate this asset-pricing property, this

property is more general as the fundamentals of most assets are hard-to-value to varying degrees.

For example, fundamentals of young small-cap stocks in new industries are harder to value than

those of large-cap stocks in established industries.

We propose a continuous-time equilibrium model in which two rational and risk-averse investors

costlessly trade a risky asset with hard-to-value fundamentals. This asset produces a stream of ben-

efits called a “convenience yield” that grows at an unobserved and stochastically evolving rate. In-

vestors have different priors and, aside from the convenience yield itself, observe no other observable

signal about the yield’s latent growth rate. The risky asset can be interpreted as a cryptocurrency

where the convenience yield represents the flow of benefits from use as a medium of exchange or

another asset such as a stock whose dividends or earnings are hard-to-value. Due to Bayesian

learning, investors update their beliefs about the growth rate in the direction of shocks to the con-

venience yield, but only gradually, which results in return predictability by past prices. Specifically,

returns are predictable by ratios of prices to their moving averages (MAs), which summarize the

beliefs of investors about the expected convenience yield growth rate. Moreover, because of this

predictability, it is optimal for investors to use the price-to-MA ratios in trading. As far as we

know, this is the first fully rational equilibrium model that justifies the use of technical analysis.1

Our model contributes to several strands of literature. First, it provides a fully rational and

1Treynor and Ferguson (1985), Brown and Jennings (1989), Cespa and Vives (2012), Brock et al. (1992), Hong
and Stein (1999), Lo et al. (2000), Chiarella et al. (2006), Edmans et al. (2015), and Han et al. (2016), among others,
show that past prices can predict returns and trading based on technical indicators, especially the moving averages
of prices, can be profitable in the stock market. Schwager (1989) and Lo and Hasanhodzic (2009) further provide
insightful comments about the effectiveness of technical strategies from top practitioners.
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endogenous justification for technical analysis and return predictability by past prices, which most

practitioners and prior studies justify with irrational forces, such as sentiment, overconfidence, and

under-reaction (e.g., Barberis et al., 1998; Daniel et al., 1998; Hong and Stein, 1999; Moskowitz

et al., 2012).2 Moreover, prior models with technical traders assume that a subset of investors use

exogenously given technical trading rules (e.g., Hong and Stein, 1999; Han et al., 2016). Our model

also proposes a new mechanism relative to the few rational models that generate return predictabil-

ity by past prices. For example, in prior rational expectations equilibrium models with learning,

price drift can arise, but only given higher-order disagreement between traders (e.g., Banerjee

et al., 2009). Without this disagreement, agents infer each others’ private signals immediately via

the price, precluding a gradual drift toward the fundamental value. In our model, drift does not

require disagreement, only Bayesian learning and the hard-to-value property of fundamentals. The

model also offers a potential explanation for why momentum and post-earnings-announcement drift

are stronger when information uncertainty is higher (e.g., Zhang, 2006), and why foreign investors,

who presumably lack value-relevant information of domestic investors, rely on momentum trading

(e.g., Choe et al., 1999).

In the empirical portion of the paper, we investigate whether the predictability of returns by

price-to-MA ratios holds for Bitcoin and several equity portfolios with plausibly hard-to-value fun-

damentals. We find that daily Bitcoin returns are predictable in- and out-of-sample by ratios of

prices to their 1- to 20-week MAs. Consistent with our model, this predictability strengthens when

uncertainty decreases as investors learn about the dynamics of the latent growth of the convenience

yield. Indeed, we find a negative interaction between the price-to-MA ratio and conditional re-

turn variance, a proxy for uncertainty, in return-forecasting regressions. To assess the economic

significance of this Bitcoin-return predictability to investors, we form a trading strategy that goes

long Bitcoin when the price is above the MA, and long cash otherwise. We find that these trad-

ing strategies significantly outperform the buy-and-hold benchmark, producing large alphas and

increasing Sharpe ratios by 0.2 to 0.6. These results are similar across both halves of the sample.

The MA strategies also outperform the buy-and-hold benchmark when applied to other two other

cryptocurrencies, Ripple and Ethereum, Bitcoin’s two largest competitors.

2Perhaps the most widely used investments textbook, Bodie et al. (2014), places technical analysis in a chapter
on “behavioral finance”.
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Next, we evaluate whether returns on the NASDAQ portfolio are predictable by price-to-MA

ratios during five- and ten-year windows (1998–2002 and 1996–2005, respectively) that includes the

dot.com boom-and-bust of the early 2000’s. In this period, many emerging technologies associated

with the Internet introduced fundamentals that, at the time, were considered difficult to value. We

show that our MA trading strategies applied to the NASDAQ generate significant alpha and Sharpe

ratio gains (of 0.2 to 0.5) relative to the buy-and-hold benchmark in this time period. Moreover,

the gains of the MA strategies steadily decline in the years following this period as fundamentals

presumably became easier to value. We also apply our MA strategies to portfolios formed on size

as well as portfolios formed on size and analyst coverage, both of which are widely used proxies for

information availability. Consistent with our model, we find that over the 1963 to 2018 time period,

the price-to-MA ratios positively and significantly forecast returns on the Fama and French (1993)

small-cap portfolio, and vice-versa for the Fama-French large-cap portfolio. Moreover, in the 1985

to 2018 time-period during which analyst forecasts are available, we find that return predictability

by the price-to-MA ratios decreases with both size and analyst coverage.

Our model also suggests that trading results from differences in the MAs across investors.

Consistent with this implication, we show that proxies for disagreement across MA horizons and

total turnover implied by the various MA strategies are significantly and positively associated with

Bitcoin trading volume.

Overall, consistent with our model, the results in this paper demonstrate that for Bitcoin and

stocks with hard-to-value fundamentals, price drift exists and price-to-moving average ratios predict

returns.

The rest of the paper is organized as follows. Section II discusses the model and related litera-

ture. Section III describes the data. Section IV reports empirical results, and Section V concludes.

2. The Model and Related Literature

2.1. The Model

In this section, we present a rational equilibrium asset-pricing model that examines the implications

of having hard-to-value fundamentals. In the model, investors continuously trade two assets for no

cost: a risky asset called “Bitcoin” with one unit of net supply and one risk-free asset with zero

3



net supply.

Assumption 1. Each unit of Bitcoin provides an observable stream of convenience yield δt, that

grows according to:

dδt
δt

= Xtdt+ σδdZ1t, (1)

where the drift, Xt, is unobservable, and evolves according to:

dXt = λ(X̄ −Xt)dt+ ρσXdZ1t +
√

1− ρ2σXdZ2t, (2)

where σδ > 0, λ > 0, X̄ > 0, σX > 0, and ρ ∈ [−1, 1] are all known constants and (Z1t, Z2t) is a

two-dimensional standard Brownian motion.

While Bitcoin does not provide any cash flows, we assume it offers some stochastic flow of bene-

fits, which we call “convenience yield”, δt, to its owners. For example, holding Bitcoin can facilitate

transactions (particularly illicit ones), hedge hyper-inflation risk caused by political turmoil, and

serves as a store of value. As a result, investors buy it trading off convenience yield and risks. For

other financial assets like stocks and bonds, the convenience yield can be interpreted as a dividend,

earnings, or interest paid to their owners. The state variable Xt is a catch-all for whatever state

variable affects the convenience yield of an asset. For example, in the case of Bitcoin, the state

variable may capture uncertain regulatory risks, the likelihood of hyper-inflation in some countries,

the popularity of competing cryptocurrencies, and the related technology (e.g., block-chain update

speed) advancement. In the case of stocks, the Xt can represent the aggregate of all variables that

impact mean dividend growth.

On the investors, we make two assumptions:

Assumption 2. There are two types of investors who differ by their priors about the state variable

Xt and possibly initial endowment of Bitcoin.3 Type i investor is endowed with ηi ∈ (0, 1) units

of Bitcoin with η1 + η2 = 1 and has a prior that X0 is normally distributed with mean M i(0) and

variance V i(0), i = 1, 2.

Assumption 3. All investors have log preferences over the convenience yield provided by Bitcoin

3Since investors can continuously observe δt, they can directly calculate the volatility σδ and therefore there is
no disagreement about the volatility.
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with discount rate β until time T . Specifically, the investor’s expected utility is

E

∫ T

0
e−βt logCitdt,

where Cit denotes the convenience yield received by a Type i investor from owning Bitcoin.

Denote by F it the filtration at time t generated by the Bitcoin price process {Bs} (or equivalently,

the convenience yield process δt) and the prior (M i(0), V i(0)) for all s ≤ t and each investor i = 1, 2.

Further let M i
t ≡ E[Xt|F it ] be the conditional expectation of Xt given F it . While many risky assets

have uncertain and stochastically evolving fundamental growth rates, the definition of the filtration

and Mt captures the essence of the “hard-to-value” property. That is, Bitcoin investors must

filter out the state variable from, at most, the history of convenience yields, and they have initial

disagreement about what the convenience yield growth rate is. In contrast, assets with less hard-to-

value fundamentals, such as large-cap stocks in established industries, have other signals that help

forecast fundamentals, such as thoroughly vetted accounting statements, established correlations

with macroeconomic conditions, and analyst coverage.

Proposition 1. In equilibrium in the economy defined by Assumptions 1–3:

dBt
Bt

=

(
(β +M i

t )−
δt
Bt

)
dt+ σδdẐ

i
1t, (3)

the fraction of wealth invested in the Bitcoin by Investor 1 is

1 +
αt

1 + αt

M1
t −M2

t

σ2δ
, (4)

and by Investor 2 is

1− 1

1 + αt

M1
t −M2

t

σ2δ
, (5)

where

M i
t = hi(t) + f i(0, t) log

Bt
B0

+ (f i(t, t)− f i(0, t))

(
logBt −

∫ t
0 g

i(u, t) logBudu∫ t
0 g

i(u, t)du

)
(6)

is the ith investor’s conditional expectation, E[Xt|F it ], hi(.), f i(., .), and gi(., .) are as defined in
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the Appendix for i = 1, 2, and αt is as defined in Appendix (A.8), denoting the ratio of the marginal

utility of type 1 investor to that of type 2 investor. In addition, if

V i(0) ≤ ρσXσδ +
σ2X
λ
, (7)

then

gi(u, t) > 0, f i(t, t)− f i(0, t) > 0,∀u > 0, t > 0. (8)

Proof. See Appendix.

2.2. Discussion and Related Literature

There are two important implications of Proposition 1. First, under Condition (7), the cum-

yield Bitcoin return is positively predictable by “ratios” of prices to their moving averages. Second,

because of the predictive power of the price-to-MAs ratios, every investor’s trading strategy depends

on the moving averages.4 As far as we know, this is the first equilibrium model that justifies the

use of moving averages of prices in guiding trading. The return predictability represents a drift in

prices because the conditional expected change in prices increases with the current price. This drift

in prices arises from Bayesian learning: investors update their beliefs about the latent convenience

yield growth rate in the direction of the realized change in the convenience yield, but only gradually

away from their priors.5

Existing models generate price drift via different mechanisms, most of which are based on

behavioral biases, such as under- or over-reaction. On the rational side, under certain circumstances,

rational expectations equilibrium (REE) models with learning, beginning with the seminal work of

Grossman (1976) and Hellwig (1980), also predict price drift. While agents in our model observe a

common signal, these models feature agents who receive private signals about fundamental value,

4It can be shown that Condition (7) is guaranteed to hold eventually almost surely because ρσXσδ+
σ2
X
λ

is greater
than the steady-state level to which the conditional variance, V i(t), monotonically converges. With gi(u, t) > 0,∫ t

0
gi(u, t) logBudu∫ t

0
gi(u, t)du

is a weighted moving average of log Bitcoin prices.
5One can easily extend this model to include an additional signal about the fundamental. In this extension, the

traders would still use MAs as a signal to trade. The less precise the additional fundamental signal, the more weight
traders would place on the price-to-MAs. Thus, the predictability of returns by the price-to-moving-average ratios
should be stronger the greater the degree to which fundamentals are hard-to-estimate.
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and they infer each others’ signals from the price. As discussed in Banerjee et al. (2009), price drift in

these models requires higher order disagreement to slow down the rate at which agents incorporate

each others’ signals in their private valuations. In contrast, agents in our model observe a common

signal, and price drift does not depend on multiple traders. Cochrane et al. (2008) also shows that

price drift can arise under certain conditions when multiple risky assets exist.

On the irrational side, many studies try to explain price drift, some times called time-series

momentum, and the related (cross-sectional) momentum phenomenon (e.g., Moskowitz et al., 2012).

One explanation proposed by this literature is sustained over-reaction, which can be caused, for

example, by positive feedback trading (DeLong et al., 1990; Hong and Stein, 1999, over-confidence

and self-attribution confirmation biases (Daniel, Hirshleifer, and Subrahmanyam, 1998), herding

(Bikhchandani et al., 1992), or general sentiment (Baker and Wurgler, 2006, 2007). A second

explanation is under-reaction, which can be caused, for example, by conservatism bias (Barberis

et al., 1998), trend following (Hong and Stein, 1999), and gradual diffusion of information (Hong

and Stein, 1999; Hong et al., 2000). The reaction of investors to signals in our model resembles

“under-reaction”, but not because of behaviorial biases. With hard-to-value fundamentals, investors

rationally weight priors and incoming signals that feature uncertainty, which leads to price drift,

but this price drift does not represent mispricing.

Our model’s setting and prediction are at least intuitively related to the finding that cross-

sectional momentum and post-earnings announcement drift are stronger when information uncer-

tainty is higher (e.g, Zhang, 2006). Information uncertainty is presumably highly correlated with

the degree to which fundamentals are hard-to-value, and therefore we would expect to see greater

price drift in segments with high information uncertainty. Moreover, foreign investors, who pre-

sumably lack the information of domestic investors, rely relatively heavily on momentum strategies

(e.g., Choe et al., 1999).

The second implication of Proposition 1 is that the optimal trading strategy is a function of

the MAs and trade is driven by a difference in investor beliefs. Thus, our model justifies one of

the most widely used class of technical analysis strategies, those based on MAs of prices. No prior

rational equilibrium endogenously generates such a practice. Han et al. (2016) propose a model

with technical traders, however, these traders exogenously use a price-to-moving average ratio rule.
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2.2.1. Cryptocurrency Literature

Our paper contributes to the growing literature on the economics of cryptocurrencies and the

associated blockchain technology. Relatively few papers in this vein study asset-pricing properties.

Among them, Liu and Tsyvinski (2018) document a momentum effect in cryptocurrency returns,

but, unlike our paper, do not provide a theory to rationalize this phenomenon. Using the Cagan

model of hyperinflation, Jermann (2018) empirically examines the relative contribution of shocks

to volume and velocity on variation in Bitcoin’s price. Jermann finds that most of the variation

in Bitcoin’s price is attributable to volume shocks, consistent with stochastic adoption dominating

technology innovations. Dwyer (2015) explains how cryptocurrencies can have positive value given

limited supply. Athey et al. (2016), Bolt and van Oordt (2016), and Pagnotta and Buraschi (2018)

all provide models in which the value of cryptocurrencies depends on some combination of (i) usage

and the degree of adoption, (ii) the scarcity of Bitcoin, and (iii) the value of anonymity.

Our model differs from those used by prior studies in at least two important respects. First, our

model does not require Bitcoin to be interpreted as a currency per se. We do not directly specify

currency-related determinants of its value (e.g. (i)–(iii) above). Rather, we model the flow of utility-

providing benefits as a random state variable, which we call a “convenience yield”, but admits a

more general interpretation. This generality is important because some market participants argue

that Bitcoin is better thought of as a speculative asset than a currency (e.g., Yermack, 2013). For

example Bitcoin’s high volatility eliminates its use a store of value, a defining feature of money.

Second, the papers cited above all assume full-information, however, our model features learning.

This feature is critical given the lack of agreement on what determines the value of Bitcoin.6 The

learning aspect of our model also helps us to answer novel questions relative to the prior studies

such as: what predicts Bitcoin returns?

Relative to asset pricing inquiries like ours, most of the literature on the economics of Bitcoin

seeks to identify problems, implementation issues, and uses of cryptocurrencies. Böhme et al. (2015)

discuss the virtual currency’s potential to disrupt existing payment systems and perhaps even

monetary systems. Harvey (2017) describes immense possibilities for the future for Bitcoin and its

underlying blockchain technology. Balvers and McDonald (2018) describe conditions and practical

6In a Bloomberg interview on December 4, 2013, Alan Greenspan stated:“You have to really stretch your imagi-
nation to infer what the intrinsic value of Bitcoin is. I haven’t been able to do it. Maybe somebody else can.”
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steps necessary for using blockchain technology as a global currency. Easley et al. (2017) provide

a model of Bitcoin trading fees. Yermack (2017) discusses use of Blockchain for trading equities

and the corresponding governance implications. Gandal et al. (2018) and Griffin and Shams (2018)

document Bitcoin price manipulation. Biais et al. (2018) model the reliability of the Blockchain

mechanism. Catalini and Gans (2017) discuss how blockchain technology will shape the rate and

direction of innovation. Chiu and Koeppl (2017) study the optimal design of cryptocurrencies and

assess quantitatively how well such currencies can support bilateral trade. Cong and He (2018)

model the impact of blockchain technology on information environments. Fernández-Villaverde and

Sanches (2017) model competition among privately issued currencies. Foley et al. (2018) document

that a large portion of Bitcoin transactions represent illegal activity. Huberman et al. (2017) model

fees and self-propagation mechanism of the Bitcoin payment system. Malinova and Park (2017)

model the use of blockchain in trading financial assets. Saleh (2017) examines economic viability of

blockchain price-formation mechanism. Prat and Walter (2016) show theoretically and empirically

that Bitcoin prices forecast Bitcoin production.

3. Data

Bitcoin trades continuously on multiple exchanges around the world. We obtain daily Bitcoin

prices from the news and research site Coindesk.com, which is now standard in academic and

professional publications such as the Wall Street Journal, over the sample period July 18, 2010

(first day available) through June 30, 2018. Starting July 1, 2013, Coindesk reports a Bitcoin price

equal to the average of those listed on large high-volume high-liquidity exchanges. Prior to July

2013, Coindesk reported the price from Mt. Gox, an exchange that handled most of the trading

volume in Bitcoin at the time.7 We also obtain data on two other cryptocurrencies, Ripple (XRP)

and Ethereum (ETH), from coinmarketcap.com. These two currencies are the largest competitors

to Bitcoin by market cap, but are only available over shorter samples (August 4, 2013–June 30,

2018 for XRP, and August 8, 2015–June 30, 2018 for ETH).

We obtain daily risk-free rate, market excess return (MKT ), and returns on three Fama and

French (1993) size portfolios from the website of Kenneth French. The three size portfolios, “small”,

7For details on the history of the Bitcoin market, see Eha (2017).
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“medium”, and “big”, are based on the NYSE 30%- and 70%-iles of market capitalization at

the end of each month. To measure the risk-free rate on weekends, we use the most recently

available one-day risk-free rate. nThe average risk free rate over this time (see below) is multiple

orders of magnitude smaller than the average Bitcoin return over this time so our risk-free rate

assumptions can not have an economically meaningful impact on our results. We obtain individual

stock data from CRSP and analyst coverage from IBES. We obtain daily prices and total returns

on the NASDAQ total return index from Bloomberg. We obtain daily levels of the CBOE implied

volatility index (V IX), 3-month and 10-year Treasury yields (BILL and LTY , respectively), and

Moody’s BAA- and AAA-bond index yields (BAA and AAA, respectively) from the St. Louis

Federal Reserve Bank website over the sample period July 18, 2010–June 30, 2018. We define

TERM = LTY −BILL and DEF = BAA−AAA. V IX, BILL, TERM , and DEF are commonly

used returns predictors and among the few available at the daily frequency (e.g., Ang and Bekaert,

2007; Goyal and Welch, 2008; Brogaard and Detzel, 2015).

Table 1 presents summary statistics for select variables used in our predictability tests. Panel

A shows that Bitcoin earns an annualized daily excess return of 193.2% and a Sharpe ratio of 1.8

with an annualized volatility of 106.2%. Moreover, Bitcoin has a modest positive autocorrelation.

In contrast, MKT has a modest negative autocorrelation and much lower average return and

volatility over the period of 13.7% and 14.8%, respectively. Although far less than the Sharpe ratio

of Bitcoin, the resulting MKT Sharpe ratio of 0.92 is relatively high by historical standards. Panel

B presents summary statistics for several benchmark return predictor variables used in the next

section. All four are highly persistent, with an autoregressive coefficient of 0.95–1.0. Moreover,

Augmented Dickey-Fuller tests fail to reject the null that any of the return predictors except VIX

contain a unit root.

4. Empirical results

In this section, we test the prediction from our model in Section 2 that short-horizon returns on

Bitcoin and other assets with hard-to-value fundamentals exhibit price drift and are predictable by

moving averages of price. We begin by examining the predictability of returns on Bitcoin, whose

fundamentals are arguably “hardest” to value among the assets we consider.
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4.1. In-sample predictability of Bitcoin returns

Motivated by Eqs. (3) and (6), we test the predictability of one-day returns using the difference

between the log price of Bitcoin and the moving average of these log prices. For empirical work,

we make two simplifications to the moving averages in Eq. (6). First, due to the difficulties of

estimating the exact functionals, we assume equal weighting in the moving averages (instead of the

gi-based weights).8 Second, following Brock et al. (1992), Lo et al. (2000), Han et al. (2013), Neely

et al. (2014), and Han et al. (2016), we specify fixed time horizons of L =1, 2, 4, 10, and 20 weeks

for the moving averages even though these horizons are endogenous in our model.

Specifically, letting Bt denote the price of Bitcoin on day t, we define:

bt = log(Bt), (9)

and the moving averages by:

mat(L) =

(
1

n · L

) n·L−1∑
l=0

bt−l, (10)

where n denotes the number of days per week in L weeks. Bitcoin trades 7 days per week, however

stock returns and the macro predictors are only available on the 5 business days per week. Hence,

for tests using stock returns and the latter predictors, we use n = 5. For tests using only Bitcoin

returns and moving averages, we use 7-day-per-week observations (n = 7).9 The log price-to-moving

average ratios, denoted pmat(L), serve as our central predictor of interest in empirical tests and

are defined as:

pmat(L) = bt −mat(L). (11)

Under condition (7), the pmat(L) should positively predict Bitcoin returns over short time

horizons. Table 2 evaluates in-sample predictive regressions of the form:

rt+1 = a+ b′Xt + εt+1, (12)

8The exact functional form is determined by our exact setting, e.g., log utility. The functional form we use in
empirical tests still captures the essence of our model, which is robust to more general settings, that price drift exists
by functions of past prices, and these functions at least approximate price-to-moving average ratios.

9To be clear, using 5-day (7-day) per week observations, the moving average horizons for L =1, 2, 4, 10, and 20
weeks are, respectively, 5, 10, 20, 50, and 100 (7, 14, 28, 70, and 140) days.
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where rt+1 denotes the return on Bitcoin on day t+1. To facilitate comparison with predictability by

BILL, TERM , DEF , and V IX, we use 5-day “business” weeks throughout the table. Columns

(1)–(5) of Panel A present results with Xt = pmat(L) for each L. The pmat(L) significantly

predict rt+1 for all L with the positive sign predicted by our model. The moving averages of

different horizons will mechanically be highly correlated with each other. Hence, to test whether

different horizons’ pmat(L) contain non-redundant predictive information, column (6) presents

results in which the predictors are the first three principal components of the pmat(L), denoted

Xt = (PC1t, PC2t, PC3t)
′. The second and third principal components each load with at least

marginal significance and the adjusted R2 is roughly three to four times as high as the specifications

in columns (1)–(5). Hence, it appears the set of all pmat(L) contain at least two distinct predictive

signals, consistent with our model in which different traders use different MA horizons.

Panel B presents predictive regressions of the form Eq. (12) using the common “macro” return

predictors Xt = V IXt, BILLt, TERMt, or DEFt. Columns (1)–(5) show that none of these

variables significantly predict Bitcoin returns in Eq. (12) either individually or jointly. Moreover,

column (6), which uses predictors Xt = (V IXt, BILLt, TERMt, DEFt, PC1t, PC2t, PC3t)
′,

shows that the macro return predictors do not subsume the predictive power of the pmat(L).

Condition (7) will hold after enough time elapses with probability one as agents learn and

posterior variance decreases. However, at times when the variance of the conditional expectation

is relatively high, the predictive coefficient (analogous to the f i(t, t) − f i(0, t) in Eq. (6)) on the

pmat(L) should be relatively low. When this variance is high enough to violate condition (7), which

is most likely to happen at the beginning of the sample, the predictive coefficient will even become

negative. To test these patterns, we proxy for variance of the state variable using a measure of the

conditional variance of the Bitcoin return. Specifically, we use the exponentially weighted moving

average variance of Bitcoin returns, denoted σ2t .
10

10We use the smoothing parameter of 0.94 which is the default from RiskMetrics for computing conditional
variances of daily returns. σ2

t is defined recursively as σ2
t = (0.94) ∗ σ2

t−1 + (0.06) ∗ r2t , where rt is the day-t return
on Bitcoin. σ2

0 is defined to be the sample variance over the first 140 days of our sample that are not used in our
return-prediction tests because they are required to compute the initial 140-day moving average. In particular, the
σ2
t is not based on any “in-sample” data used in the predictive regressions. In our model, it can be shown that the

conditional variance of discretized returns is tightly linked to the posterior variance.
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Table 3 presents predictive regressions of the form:

rt+1 = a+ b · pmat(L) + c · σ2t + d · pmat(L) · σ2t + εt+1. (13)

For these regressions, we use the whole sample period 12/06/2010–06/30/2018 and 7-day-per-week

observations. The pmat(L) load significantly for all moving average horizons. Consistent with our

model, the interaction terms between pmat(L) and σ2t are all negative, so high variance attenuates

the predictive coefficients on the pmat(L). Moreover, the interaction terms are significant for three

of the five moving average horizons.

The top graph in Figure 1 plots the conditional variance of the Bitcoin returns over time.

Consistent with the role of learning in our model, the variability of the conditional variance decreases

over time. The bottom graph in Figure 1 plots the coefficient on the pmat(4) conditional on variance

(b+ d · σ2t ). Consistent with our model, this coefficient is positive most of the time, especially later

in the sample, however it is negative when conditional variance is high enough, early in the sample.

Overall, the in-sample predictability evidence in Tables 2 and 3 is consistent with our model.

The pmat(L) positively predict Bitcoin returns on average. However, high conditional variance

that exists before agents have a chance to “learn it away” can reverse this predictive relationship.

4.2. Out-of-sample predictability of Bitcoin returns

It is well-established that highly persistent regressors such as V IX, BILL, TERM, and DEF can

generate spuriously high in-sample return predictability (e.g., Stambaugh, 1999; Ferson et al., 2003;

Campbell and Yogo, 2006). These biases, parameter instability, and look-ahead biases imply that

in-sample estimates can overstate true real-time predictability, which directly impacts investors

(e.g., Goyal and Welch, 2008). Hence, we next assess the out-of-sample predictability of Bitcoin

returns.

Table 4 presents out-of-sample R2 (R2
OS) of forecasts from recursively estimated regressions

similar to those estimated in-sample in Table 2.11 The first five columns of Panel A report R2
OS

based on regressions of the form Eq. (12). For robustness, we report R2
OS using several split dates

between the in-sample and out-of-sample periods that include both relatively large in- and out-of-

11All out-of-sample regressions in this Table use expanding (not rolling) windows using all data available through
t to make the forecast for day t+ 1.
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sample periods (e.g., Kelly and Pruitt, 2013). The last column (denoted MEAN), follows Rapach

et al. (2010) and presents R2
OS for the MEAN combination forecast, which is the simple average of

the forecasts from the first five columns. Prior studies find that the MEAN combination forecasts

are robust, frequently outperforming more sophisticated combination methods (that have more

estimation error) in forecasting returns and other macroeconomic time-series out-of-sample (e.g.,

Timmermann, 2006; Rapach et al., 2010; Detzel and Strauss, 2018). Moreover, with diffuse priors

about which MA horizon is optimal, technical traders would presumably give equal-weight to the

different forecasts.

Panel A shows that several of the pmat(L) individually predict returns out-of-sample with

R2
OS > 0. Moreover, for each split date, the MEAN forecasts forecasts predict returns with at least

marginal significance and R2
OS of 0.83%–1.42%, which are high for the daily horizon. For compari-

son, Pettenuzzo et al. (2014) find out-of-sample R2 ranging from -0.08% to 0.55% for monthly stock

returns. Panel B presents results from similar tests as Panel A, but using V IX, BILL, TERM,

and DEF as predictors. Unlike the forecasts based on the pmat(L), those based on the macro

predictors generally have negative R2
OS . Prior evidence show that predicting returns out-of-sample

is challenging, especially at short horizons. Hence, it is already remarkable that we observe one-

day out-of-sample predictability of Bitcoin returns by the pmat(L). It should also be the case that

this predictability increases with horizon. Thus, in Panel C, we present R2
OS based on recursively

estimated regressions of one-week (7-day) Bitcoin returns on the pmat(L):

rt+1,t+7 = a+ b · pmat(L) + εt+1,t+7. (14)

Consistent with prior evidence on stock and bond return predictability, Panel C shows that for each

out-of-sample window and each L, the R2
OS generally increase in both magnitude and significance

relative to the analogous one-day-return R2
OS in Panel A. The MEAN forecast, for example, has R2

OS

that are statistically significance and large for weekly returns. For comparison, Rapach et al. (2010)

find R2
OS of 1%–3.5% for quarterly stock returns. It is also worth noting that the predictability

is not confined to the early part of the sample, the most recent 10% of the sample still has large

and statistically significant R2
OS . Overall, the out-of-sample evidence shows that the in-sample

predictability of Bitcoin returns does not represent small-sample biases and evinces that investors
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can take advantage of Bitcoin predictability by moving averages of log prices.

4.3. Performance of Bitcoin technical analysis strategies

The results above show that the pmat(L) predict Bitcoin returns with statistical significance. Next,

we evaluate the associated economic significance by assessing the performance of trading strategies

based on this predictability (e.g., Pesaran and Timmermann, 1995; Cochrane, 2008; Rapach et al.,

2010). We define the buy indicator (buy=1) associated with each MA strategy, MA(L), as:

SL,t =


1, if pmat(L) > 0

0, otherwise.

(15)

The return on the Bitcoin MA(L) strategy on day t is given by:

r
MA(L)
t = SL,t · rt + (1− SL,t) · rft, (16)

where rt and rft denote, respectively, the return on Bitcoin and the risk-free rate on day t. Intu-

itively, the trading strategy defined by Eq. (16) captures the short-term trends predicted by our

model by going long Bitcoin when its price is expected to trend upward, and vice versa. We denote

the excess return of the buy-and-hold position in Bitcoin as rxt and the excess return on the MA(L)

strategies by rx
MA(L)
t .

Table 5 presents summary statistics for the buy-and-hold and MA(L) strategies. Panel A, which

uses the full sample (12/06/2010–6/30/2018), shows that all strategies are right-skewed and have

fat tails. The Sharpe ratio of Bitcoin is 1.8, which is about four times the historical Sharpe ratio

of the stock market (e.g., Cochrane, 2005). All of the MA(L) strategies further increase this ratio

to 2.0 to 2.5. Moreover, all but one of these Sharpe ratio gains are at least marginally significant

using the heteroskedasticity and autocorrelation (HAC) robust test for equality of Sharpe ratios of

Ledoit and Wolf (2008). The maximum drawdown of Bitcoin is 89.5%, while those of the MA(L)

strategies are all lower, ranging from 64.4% to 77.9%. Comparing Panels B and C indicates that

the performance of Bitcoin was higher during the first half of the sample, although the Sharpe ratio

gains of the MA(L) strategies relative to the buy-and-hold position are similar in both subsamples.
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Panel A of Figure 2 plots the cumulative value of $1 invested in Bitcoin and the MA(2) (two-

week) strategy at the beginning of the sample. At the end of our sample, the $1 in Bitcoin grew

to $33,617 while the $1 in the MA(2) strategy grew to approximately $148,549, a difference of

about $114,932 over 7.5 years! Panel B plots the drawdowns of Bitcoin and the MA(2) strategy.

As Panel B shows, the out-performance of the MA strategies relative to the buy and hold largely

stems from the MA strategy having both shorter and less severe drawdowns than the buy-and-hold.

For example, Bitcoin prices hit an all-time high in December 2017 at $19,343 and subsequently fell

to $6,343 by the end of our sample. Panel B shows investors using the MA(2) strategy would have

been spared most of the losses from this price decline.

Table 6 further tests the performance of MA strategies relative to the buy-and-hold. Specifically,

we regress the excess returns of the MA strategies on the buy-and-hold benchmark:

rx
MA(L)
t = α+ β · rxt + εt. (17)

The MA(L) strategies are long the risk-free rate up to about 40% of days, so β < 1 and β ·rxt is the

natural benchmark return for evaluating the average returns of rxMA(L). Moreover, the arguments

in Lewellen and Nagel (2006) show that α will increase with the quantity cov(SL,t, Et(rxt)), which

measures the degree to which the pmat(L) positively predicts Bitcoin returns.

A positive alpha also indicates that access to rx
MA(L)
t increases the maximum possible Sharpe

ratio relative to that of a buy-and-hold Bitcoin position (rxt). Thus, a measure of the economic size

of alpha is the degree to which it expands the mean-variance frontier. Intuitively, this expansion

depends on the alpha relative to the residual risk investors must bear to capture it. The maximum

Sharpe ratio (SRNew) attainable from access to rxt and rx
MA(L)
t is given by:

SRNew =

√(
α

σ(εt)

)2

+ SR2
Old, (18)

where SROld is the Sharpe ratio of rxt (e.g., Bodie et al., 2014). The percentage increase in

mean-variance utility, which, for any level of risk aversion, is equal to:

Utility gain =
SR2

New − SR2
Old

SR2
Old

, (19)
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measures the economic significance of the frontier expansion achieved by α. In Table 6, we report

both the appraisal ratio
(

α
σ(εt)

)
and mean-variance utility gains along with the α. For comparison,

Campbell and Thompson (2008) find that timing expected returns on the stock market increases

mean-variance utility by approximately 35%, providing a useful benchmark utility gain.

Panel A shows that over the entire sample period, the MA(L) strategies earn significant α with

respect to rxt of 0.09% to 0.24% per day. These alphas lead to economically large utility gains

of 19.7% to 85.5%. Panel B shows these results remain strong in the second half of the sample.

With the turnovers in the Table, it would take large transaction costs of (1.38%–6.85% one-way)

to eliminate the alphas of the MA(L) strategies. These figures are large relative to actual one-way

transaction costs in Bitcoin. For example, market orders on the Bitcoin exchange GDAX have fees

of 0.10%–0.30% for market orders and 0% for limit orders. Even the most expensive market order

fees are an order of magnitude too small to meaningfully impact the αs of the MA(L) strategies.

A naive alternative to our discrete buy-or-sell strategies defined by Eq. (16) would be estimating

mean-variance weights using our Bitcoin-return forecasts, and then testing whether the resulting

strategy out-performs the buy-and-hold benchmark (e.g., Marquering and Verbeek, 2004; Campbell

and Thompson, 2008; Huang et al., 2015). However, this approach has several theoretical and

empirical shortcomings relative to our simple MA(L) strategies. First, the mean-variance weights

assume the investor is choosing between the market return and the risk-free asset. However, Bitcoin

is a poor theoretical proxy to the market portfolio of risky assets. Second, prior to 2017, investors

could not short-sell Bitcoin or buy it on margin or via futures contracts. Hence, the weights on

Bitcoin should be constrained between zero and one. Thus, the mean-variance-weights approach

could only outperform the MA strategies by choosing optimal variation between zero and one.

This in turn exacerbates the following two problems: (i) that the mean-variance weights require

at least two estimated forecasts, and therefore come with substantial estimation error, and (ii) the

mean-variance weights assume for tractability the mean-variance functional form of investor utility.

While a common assumption, mean-variance utility is unlikely to precisely capture the behavior

of a representative investor. In contrast, our discrete MA(L) strategies are based on a directly

observable out-of-sample signals and require no estimation error. They also make no assumption

about the utility of underlying investors. Overall, the strong performance of our MA(L) strategies

relative to the buy-and-hold precludes the need for more sophisticated methods to demonstrate the
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economic significance of out-of-sample predictability by MAs.

4.4. Performance of trading strategies applied to other cryptocurrencies

To examine the robustness of our trading strategy performance, Table 7 presents performance

results similar to those above for Ripple (XRP, Panels A and B) and Etheruem (ETH, Panels C

and D), which are the two largest digital currencies by market capitalization beside Bitcoin. Panel

A shows that all the MA strategies except MA(4) increase Sharpe ratios relative to the buy-and-hold

strategy by up to 0.54 (from 1.05). This difference is significant for the MA(1) and MA(2) strategies

and marginally significant for the equal-weighted portfolio of MA strategies (EW). Each strategy

reduces the maximum drawdown of the buy-and-hold Ripple strategy by about 4.7%-32.3%. Panel

B shows that the MA(1), MA(2), MA(4), and EW strategies also earn significant alphas with

respect to the buy-and-hold XRP strategy, generating large utility gains (92.9%–180.1%) in the

process.

Panels C and D present similar results as Panels A and D, respectively, but for strategies based

on ETH instead of XRP. The ETH sample is only two and a half years long, leading to relatively

low statistical power, but qualitatively similar inferences as for the Bitcoin and Ethereurm MA

strategies. The MA strategies earn higher Sharpe ratios than the buy-and-hold ETH strategy.

Panel C shows the ETH MA-strategy alphas are significant for three horizons (1, 2, and 4 weeks)

as well as the EW strategy and the associated utility gains are economically large.

4.5. Performance of strategies applied to dotcom-era NASDAQ portfolio

Next, we apply each of the MA strategies defined by Eq. (16) to the NASDAQ total return index

using daily data over the sample 1996–2005, a ten year window approximately centered around the

peak of the NASDAQ “bubble” in March 2000. During this time, fundamentals of tech stocks were

difficult to interpret, widely disagreed upon, and had great forecast uncertainty. For example, Ofek

and Richardson (2003) document that during this period, aggregate earnings of internet stocks were

negative and price-earnings ratios frequently exceeded 1000. In particular, NASDAQ fundamentals

plausibly qualify as hard-to-interpret in the 1996–2005 sample.

Table 8 documents the performance of the MA strategies applied to the NASDAQ. Results

in Panel A show that over 1996–2005, the MA(2), MA(4) and MA(10) methods possess mean
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returns more than four percent greater than the 7.3% of the buy-and-hold NASDAQ strategy.

Further, all five methods substantially boost the NASDAQ Sharpe ratio of 0.29. For example,

MA(2), MA(4) and MA(10) possess Sharpe ratios of 0.73 to 0.79. The last column documents that

the MA strategies also greatly reduce the maximum drawdown of NASDAQ (77.9%) to 25.7%–

45.6%.12 Panel B of Table 8 presents the alphas, appraisal and utility gain for the NASDAQ.

Results document significant alpha for MA(2) to MA(10) strategies. It also reveals high utility

gains for all five strategies, ranging from 137%–688%.

Panel C of Table 8 presents results over a tighter window around the NASDAQ peak. A number

of new internet companies entered the NASDAQ around this period, and the fundamentals of many

other firms were questioned after several large earnings misstatements. The NASDAQ peaked in

March 2000, and by the end of 2002 had lost 78% of its value. In contrast, the MA strategies

have maximum drawdowns from 34%-43% and the equal-weighted MA strategy lost only 34% of its

value—less than half the buy-and-hold position. Further, the Sharpe ratios for the MA strategies

during this five year window ranged from 0.36-0.60, compared to zero for the buy-and-hold. The

equal-weighted strategy generates a Sharpe ratio of 0.57 and is significantly greater than the buy-

and-hold Sharpe ratio. Overall, the performance of the trading strategies documened in Table 8 is

consistent with the predictions of our model.

Figure 3 depicts the performance of the buy-and-hold position in NASDAQ relative to the

MA(4) strategy. Panel A shows the MA(4) increases more steadily than NASDAQ. The MA(4)

returns $3.66 at the end of 2005 to an investor with a $1 investment at the beginning of 1996.

Conversely, a buy-and-hold investor in NASDAQ would have about half ($1.85) of the accumulated

value. Panel A shows that much of the performance gains from the MA strategy come from

avoiding most of NASDAQ’s large crash in the early 2000’s. Panel B further shows that the MA(4)

strategy, similar to when applied to Bitcoin, derives much of its performance from avoiding the

major NASDAQ drawdowns during this time period. Following the dotcom era, tech companies

become more established and the availability of value-relevant information presumably increases.

Hence, according to our model, the MA strategies performance should decline after this time period.

Panel C confirms that, indeed, the Sharpe ratio improvements of the NASDAQ MA(4) strategy

12We also applied our strategies to the NASDAQ over the past ten years, which follows the maturation of internet-
based technologies and an increased understanding of fundamentals. These untabulated results show that the MA
strategies no longer earn significant alpha or produce Sharpe ratio gains.
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steadily decline post-2001.

4.6. Performance of strategies applied to small-cap stocks and stocks with low analyst coverage

The NASDAQ results exploit time-series variation in the degree to which fundamentals are hard

to forecast. Next we exploit cross-sectional variation. Specifically, we examine the predictability of

returns by price-to-MA ratios across portfolios sorted on size and analyst coverage, which are two

common proxies for the availability of value relevant information (e.g., Bhushan, 1989,Hong et al.,

2000,Zhang, 2006).

In Table 9, we apply our MA strategies to each of the three value-weighted Fama and French

(1993) size portfolios, Small, Medium and, Big, which are formed based on the NYSE 30th- and

70th-percentile breakpoints of market capitalization. The sample period is July 1, 1963 through

June 30, 2018.13 Panel A presents heteroskedasticity-robust t-statistics from regressions of daily

excess portfolio returns on the price-to-moving average ratios:

rxt+1 = a+ b · pmat(L) + εt+1. (20)

For each MA, these t-statistics are positive and highly significant (3.96–6.03) for the portfolio of

small-cap stocks. The t-statistics fall for mid-cap stocks (1.67–4.43) and become negative and

insignificant for large-cap stocks ((-0.96)–(-0.10)). Hence, consistent with our model, the pre-

dictability of returns by the pmat(L) is greater for small-cap stocks than large-caps.

Panel B presents Sharpe ratios for the buy-and-hold (BH) return on each portfolio as well as

each of the MA strategies and the equal-weighted portfolio (EW) of the MA strategies. The figures

parallel those in Panel A: Sharpe ratio gains of the MA strategies are highest for small-cap stocks,

followed by mid-caps, and then large-caps. For example, in small-caps, the Sharpe ratio gain of the

EW strategy are 1.91 from 0.5, relative to 0.65 from 0.39 in large caps.

Panel C presents alphas, with heteroskedasticity-robust t-statistics in parentheses, from regres-

sions of the form:

rx
MA(L)
t = α+ β · rxt + εt+1. (21)

The alpha point estimates and t-statistics parallel the patterns documented in Panels A and B,

13Untabulated results show that inferences are robust across each half of this sample as well.
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decreasing from small- to large-cap stocks. While the performance ot the MA strategies is much

higher for small-caps than large caps, the gains are still nontrivial for large-cap stocks. Coupled

with the fact that large-cap stocks returns are unpredictable by the pmat(L), this finding suggests

that the pmat(L) are useful volatility-timing signals for large-caps.14

Table 10 presents t-statistics for predictive coefficients from regressions of the form Eq. (21) for

portfolios formed by independent sorts on size and analyst coverage. Due to IBES data availability,

the sample period for these tests is January 1985 through June 2018. Consistent with our model,

the t statistics decrease with both size and analyst coverage. The t-statistics are large and positive

in small caps, and within small caps, predictive coefficients are significantly higher for stocks with

the lowest analyst coverage. Conversely, the predictive coefficients are all negative for large caps,

and significantly moreso for the large-cap portfolios with high analyst coverage.

Overall, the results from Tables 9 and 10 show that, consistent with our model, the price-to-MA

ratios predict returns of small-cap stocks, especially those with low analyst coverage, that have a

relative lack of value-relevant information, and fail to predict returns of large-cap stocks that have

more value-relevant information available.

4.7. Volume implications of our model

In our model, trading results from differences in the moving averages used by different traders.

Testing this refutable implication provides an opportunity to validate our model’s mechanism in

explaining the predictability of Bitcoin by moving averages of multiple horizons.

We test for volume generated by technical trading in two ways. First, we evaluate whether

increases in total turnover implied by different MA signals also leads to higher Bitcoin volume.

We measure this total turnover by the sum of the turnover generated by each moving-average

buy-sell indicator SL,t:
∑

L |∆SL,t|. Second, we evaluate whether disagreement among MA buy-

sell indicators (SL,t) is associated with higher trading volume. Intuitively, if technical traders

disagree, they will trade with each other. As a measure of disagreement, we use the cross-sectional

standard deviation of the signed turnover implied by each MA strategy, denoted σL(∆SL,T ). For

14Sharpe ratio gains and alphas increase with (positive) return predictability of the timing signal (which, in our
case, are the pmat(L)) and decrease with (positive) predictability of volatility (e.g., Lewellen and Nagel, 2006. That
is, these performance metrics measure the combined effect of “market timing” and “volatility timing” benefits of a
given strategy.
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each measure, Table 11 presents estimations of regressions of the form:

∆ log(volumet) = a+ b ·Xt + c · |rt|+ d ·∆ log(volumet−1) + εt, (22)

where the Xt denotes one or both of our two volume-inducing variables. Because large price

shocks are the main empirical determinant of volume and are likely correlated with our price-based

indicators, we control for the absolute value of returns (see, e.g., Karpoff, 1987). We use change in

log volume as the dependent variable because the level of volume is not stationary. Volume is from

coinmarketcap.com, which began reporting on 12/27/2013, so these regressions use the 12/27/2013–

6/30/2018 (n = 1, 647). In Panel A, we restrict d = 0. However, to avoid any possibility of results

being driven by autocorrelation in volume, we do not make this restriction in Panel B.

Results in column (1) of both Panels demonstrate that increases in turnover across MA horizons

lead to increases in volume, controlling for price shocks. Similarly, column (2) of each panel shows

that increases in disagreement among MA traders also leads to significant increases in volume. Fi-

nally, comparing column (3) of each Panel shows that the MA-implied turnover and disagreement

jointly and positively correlate with volume, however the statistical inference varies with specifica-

tion.15 Overall, the results in Table 11 are consistent with traders using MA strategies significantly

impacting trading volume in Bitcoin.

5. Conclusion

In this paper, we theoretically and empirically examine dynamics of the prices of assets with “hard-

to-value” fundamentals, such as Bitcoin. We propose a new equilibrium theory that shows that

when fundamentals are hard to value, rational learning causes price drift and ratios of prices to

their moving averages to forecast returns. This in turn provides a fully rational motivation for

common technical analysis strategies that use price-to-moving average ratios, which are typically

justified by mispricing-based arguments. Our empirical results strongly confirm the predictions of

our model. Bitcoin and stocks with hard-to-value fundamentals are predictable by price-to-moving

average ratios and simple real-time strategies based on this predictability significantly outperform

the buy-and-hold strategy. Given that the key assumption underlying our model is the difficulty of

15This finding is likely not due to multicollinearity, the correlation between σL (∆SL,t) and ΣL (∆SL,t) is 0.53.
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forecasting fundamentals, a potentially fruitful avenue for future research is extending our results

to other assets well-described by this assumption, perhaps new asset classes, and to examine the

degree to which price drift is concentrated within these assets.
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Appendix: Proof of Proposition 1

In this appendix, we present the proof of Proposition 1.

First we provide the evolution equations for conditional expectation and the conditional vari-

ance. Following the standard continuous-time filtering theory, ∀i = 1, 2, M i
t satisfies

dM i
t = λ(X̄ −M i

t )dt+ σiM (t)dẐi1t, M i
0 = M i(0), (A.1)

where Ẑi1t is the (observable) innovation processes satisfying

Ẑi1t =

∫ t

0

Xs −M i
s

σδ
ds+ Z1t,

σiM (t) = V i(t)
σδ

+ ρσX , V i(t) ≡ E[(Xt −M i
t )

2|F it ] is the conditional variance of Xt satisfying

dV i(t)

dt
= −2λV i(t) + σ2X −

(
1

σδ
V i(t) + ρσX

)2

. (A.2)

This implies that

dδt
δt

= M i
tdt+ σδdẐ

i
1t, i = 1, 2. (A.3)

Next we derive the optimal trading strategy and equilibrium Bitcoin price. As in Detemple

(1986), Gennotte (1986), and Detemple (1991), the investor’s problem is separable in inference and

optimization.16 In particular, given the initial endowment ηi > 0 and the prior (Mi(0
−), Vi(0

−)),

Investor i’s portfolio selection problem is equivalent to

max
θi,Ci

E

∫ T

0
e−βt logCitdt,

subject to

dWt = rtWtdt+ θit(µ
i
t − rt)dt+ θitσδdẐ

i
1t − Citdt. (A.4)

16The separation principle trivially applies because the objective function is independent of the unobservable state
variable (see, e.g., Fleming and Rishel (1975, Chap. 4, Sec. 11) .

24



Define πit as the state price density for investor i. Then

dπit = −rtπitdt− κitπitdẐi1t, (A.5)

where κit is the price of risk perceived by investor i, i.e.,

κit =
µit − rt
σδ

. (A.6)

Using the standard dual approach (e.g., Cox and Huang, 1989) to solve Investor i’s problem, we

have

e−βt(Cit)
−1 = ξiπ

i
t, i = 1, 2, (A.7)

where ξi is the corresponding Lagrangian multiplier. Define

αt =
ξ1π

1
t

ξ2π2t
(A.8)

to be the ratio of the marginal utilities. Then αt evolves as

dαt = −αtµdt dẐ1
1t, µdt =

µ1t − µ2t
σδ

, α0 =
η2
η1
, (A.9)

where the first equality is from Ito’s lemma and the consistency condition (i.e., the Bitcoin price is

the same across all investors), and the last equality follows from the budget constraints.

By market clearing condition C1
t + C2

t = δt, we have

C1
t =

δt
1 + αt

, C2
t =

αtδt
1 + αt

,

κ1t = σδ +
αt

1 + αt
µdt , κ2t = σδ −

1

1 + αt
µdt ,

rt = β +
1

1 + αt
M1
t +

αt
1 + αt

M2
t − σ2δ .

Therefore, the fraction of wealth invested in the Bitcoin by Investor 1 is

κ1t /σδ,
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i.e.,

1 +
αt

1 + αt

µdt
σδ
, (A.10)

and by Investor 2 is

1− 1

1 + αt

µdt
σδ
. (A.11)

So if µdt > 0, i.e., Investor 1 is more optimistic than Investor 2, then Investor 1 borrows to buy the

Bitcoin, and Investor 2 sells the Bitcoin and lends.

The Bitcoin price

Bt = E1
t

∫ T

t

π1s
π1t
δsds =

1− e−β(T−t)

β
δt,

which implies that

dBt = ((β +M i
t )Bt − δt)dt+ σδBtdẐ

i
1t,

µit = β +M i
t , and µdt =

M1
t −M2

t

σδ
.

This implies that

dẐi1t =
1

σδ

(
d logBt −

(
M i
t −

β

1− e−β(T−t)
− 1

2
σ2δ

)
dt

)
.

Investor 1’s wealth is

W1t = E1
t

∫ T

t

π1s
π1t
C1
sds =

1− e−β(T−t)

β
C1
t =

1

1 + αt
Bt

and Investor 2’s wealth is

W2t = E1
t

∫ T

t

π2s
π2t
C2
sds =

1− e−β(T−t)

β
C2
t =

αt
1 + αt

Bt.

The number of Bitcoin Investor 1 holds is equal to

N1t =
(1 + αt

1+αt

µdt
σδ

)W1t

Bt
=

1

1 + αt
(1 +

αt
1 + αt

µdt
σδ

).
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The number of Bitcoin Investor 2 holds is equal to

N2t =
(1− 1

1+αt

µdt
σδ

)W2t

Bt
=

αt
1 + αt

(1− 1

1 + αt

µdt
σδ

).

We have

∂N1t

∂αt
=
−(1 + αt) + (1− αt)µdt /σδ

(1 + αt)3
,

which is < 0 if and only if

αt >
µdt /σδ − 1

µdt /σδ + 1
.

Next we derive the expression of the conditional expectation M i
t in the form of moving averages.

We have

dM i
t = (ai(t)− bi(t)M i

t )dt+ ci(t)d logBt, (A.12)

where

ai(t) = λX̄ +

(
β

1− e−β(T−t)
+

1

2
σ2δ

)
ci(t),

bi(t) = λ+ ci(t), ci(t) =
σiM (t)

σδ
.

Equation (A.12) implies that

M i
t = hi(t) +

∫ t

0
f i(u, t)d logBu,

where

hi(t) = e−
∫ t
0 b

i(s)ds

∫ t

0
ai(u)e

∫ u
0 bi(s)dsdu, .

and

f i(u, t) = ci(u)e
∫ u
t b

i(s)ds. (A.13)
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Then by integration by parts, we have

M i
t = hi(t)− f i(0, t) logB0 + ci(t) logBt −

∫ t

0
logBudf

i(u, t)

= hi(t) + f i(0, t) log
Bt
B0

+ (f i(t, t)− f i(0, t))

(
logBt −

∫ t
0 g

i(u, t) logBudu∫ t
0 g

i(u, t)du

)
,

(A.14)

where

gi(u, t) =
∂f i(u, t)

∂u
. (A.15)

We show next that if Condition (7) is satisfied, then gi(u, t) > 0. To prove this, we substitute

f i(u, t) in Equation (A.13) into (A.15) to obtain

gi(u, t) =

(
dci(u)

du
+ ci(u)bi(u)

)
e
∫ u
t b

i(s)ds, (A.16)

thus we need to find condition for dci(u)
du + ci(u)bi(u) > 0. Note that

dci(t)

dt
= −2λ

(
ci(t)− ρσX

σδ

)
+
σ2X
σ2δ
− (ci(t))2, (A.17)

and bi(t) = λ+ ci(t), we need to have the following condition

ci(t) < 2ρ
σX
σδ

+
σ2X
λσ2δ

. (A.18)

Due to the dynamics of ci(t) given in Equation (A.17), it can be proven that at ci(t) = 2ρσXσδ +
σ2
X

λσ2
δ
,

dci(t)
dt < 0. This implies that as long as

ci(0) ≤ 2ρ
σX
σδ

+
σ2X
λσ2δ

, (A.19)

or equivalently,

V i(0) ≤ ρσXσδ +
σ2X
λ
, (A.20)

Condition (7) holds.
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Under Condition (7), the expression

∫ t
0 g

i(u, t) logBudu∫ t
0 g

i(u, t)du
(A.21)

is a weighted average of log(Bu) over the interval [0, t]. In addition, by the definition of gi(u, t),

this implies that

f i(t, t)− f i(0, t) > 0

for any t. This completes the proof of Proposition 1.
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Figure 1: Conditional variance of Bitcoin returns and coefficient on pma(4) conditional on variance
Panel A depicts the exponentially weighted moving average variance (σ2t ) of daily Bitcoin returns.
Panel B depicts the predictive coefficient of pmat(4) (b+d ·σ2t ) in the following regression estimated
in Table 3:

rt+1 = a+ b · pmat(4) + c · σ2t + d · σ2t · pmat(4) + εt+1. (1)

The sample is 7/18/2010–6/30/2018.
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Figure 2: Performance of investment in Bitcoin buy-and-hold and MA strategies.
Panel A presents cumulative returns to $1 invested in the buy-and-hold and MA(4) Bitcoin strate-
gies over 7/18/2010–6/30/2018. Panel B presents drawdowns of each strategy in Panel A.
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Figure 3: Performance of investment in NASDAQ buy-and-hold and MA(4) strategies.
Panel A plots cumulative returns to $1 invested in the buy-and-hold and MA(4) NASDAQ strategies
on 1/2/1996 through 12/30/2005. Panel B plots drawdowns of each strategy. Panel C plots Sharpe
ratios for each strategy estimated, for each date t, using the sample period 1/2/1996 through t.
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Table 1: Summary statistics 
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on Bitcoin (BTC) 
and the CRSP value-weighted index (𝑀𝐾𝑇). Means, standard deviations, and Sharpe ratios are 
annualized. Panel B presents summary statistics of other relevant variables. AR1 denotes the first-order 
autoregressive coefficient and 𝑝%&  denotes the p-value from an augmented Dickey-Fuller test for the null 
of a unit root. The sample period is daily from 12/06/2010−6/30/2018. Bitcoin returns trade 7 days a 
week and have 2,766 observations during the sample period. Other variables are available 5 days a week 
and have 1,976 observations during this period.  
  

Panel A: Returns 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis AR1 
𝐵𝑇𝐶  193.18 106.20 1.82 -38.83 52.89 0.78 14.97 0.05 
𝑀𝐾𝑇   13.65 14.76 0.92 -6.97 4.97 -0.52 8.04 -0.08 

Panel B: Predictor variables 
  Mean(%) SD(%) Min(%) Max(%) Skewness Kurtosis AR1 𝑝%&  
𝑉𝐼𝑋  16.30 5.53 9.14 48.00 2.05 8.36 0.95 0.00 
𝐵𝐼𝐿𝐿  0.32 0.48 -0.02 1.91 1.92 5.61 1.00 1.00 
𝑇𝐸𝑅𝑀  1.99 0.61 0.87 3.60 0.45 2.50 1.00 0.89 
𝐷𝐸𝐹   0.95 0.25 0.53 1.54 0.62 2.33 1.00 0.31 
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Table 2: In-sample predictability of Bitcoin returns 
 
This table presents estimates of predictive regressions of the form:  𝑟3+1 = 𝑎 + 𝑏′𝑋3 + 𝜖3+1, where 𝑟3+1 
denotes the return on Bitcoin on business day 𝑡 + 1.  In Panel A, the predictors are the log price/moving 
average ratios, 𝑝𝑚𝑎3(𝐿), where L is the number of weeks, with 5 business days per week. We also extract 
the first three principal components (𝑃𝐶1,𝑃𝐶2,𝑜𝑟 𝑃𝐶3) from the 𝑝𝑚𝑎3(𝐿). In columns (1) to (5) of 
Panel B, the predictors include these principal components along with the other return predictors 
(𝑉𝐼𝑋, 𝐵𝐼𝐿𝐿,𝑇𝐸𝑅𝑀, and 𝐷𝐸𝐹 ). Column (6) of Panel B adds the three principal components. The 
sample period are business days 12/06/2010–6/30/2018 (𝑛 = 1,976). Heteroscedasticity-robust t-
statistics are presented in parentheses. 
 

Panel A: 1-Day Predictability of Bitcoin returns by log moving average/price ratios 
 (1) (2) (3) (4) (5)  (6) 
𝑝𝑚𝑎(1)  0.39    

 
𝑃𝐶1 -0.01 

 (2.61)    
 

 (-1.46) 
𝑝𝑚𝑎(2)   0.40   

 
𝑃𝐶2 2.64 

   (2.67)   
 

 (2.86) 
𝑝𝑚𝑎(4)    0.42  

 
𝑃𝐶3 -5.01  

  (2.81)  
 

 (1.82) 
𝑝𝑚𝑎(10)     0.46 

 
  

    (3.02) 
 

  
𝑝𝑚𝑎(20)      0.45   
     (3.00)   
Adj-𝑅2 (%) 0.41 0.45 0.51 0.62 0.64  1.88 

Panel B: 1-Day Predictability of Bitcoin returns by log moving average/price ratios 
 (1) (2) (3) (4) (5)  (6) 
𝑉𝐼𝑋  -0.04    -0.05  -0.02 
 (-1.33)    (-1.30)  (-0.34) 
𝐵𝐼𝐿𝐿   -0.11   0.05  0.02 
  (-0.71)   (1.08)  (1.91) 
𝑇𝐸𝑅𝑀    0.34  0.34  -0.04 
   (1.01)  (-0.49)  (-0.59) 
𝐷𝐸𝐹      -0.43 -0.75  -0.01 
    (-1.68) (-1.85)  (1.53) 
𝑃𝐶1        -0.01 
       (2.32) 
𝑃𝐶3        2.24 
       (2.50) 
𝑃𝐶3        5.30 
       (1.84) 
Adj-𝑅2 (%) 0.01 0.00 0.00 0.00 0.20  1.82 
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Table 3: In-sample predictability of Bitcoin returns conditional on variance 
 
This table presents estimates of predictive regressions of the form:  

𝑟3+1 = 𝑎 + 𝑏 ⋅ 𝑝𝑚𝑎3(𝐿) + 𝑐 ⋅ 𝜎3
2 + 𝑑 ⋅ 𝑝𝑚𝑎3(𝐿) ⋅ 𝜎3

2 + 𝜖3+1, 
where 𝑟3+1 denotes the return on Bitcoin on day 𝑡 + 1, 𝑝𝑚𝑎3(𝐿) denotes the log price-to-𝐿-week moving 
average ratio, and 𝜎3

2 denotes the exponential weighted moving average variance of Bitcoin returns. The 
𝜎3

2 are defined recursively as 𝜎3
2 = 0.94 ⋅ 𝜎3−1

2 + 0.06 ⋅ 𝑟3
2. The sample period for the regression is 

12/06/2010−6/30/2018 (n=2,766 using 7-day-per week observations). The initial 𝜎0
2 is estimated as the 

sample variance of 𝑟3 over 7/28/2010–12/05/2010. Heteroskedasticity-robust t-statistics are presented in 
parentheses. *, **, *** denotes 10%, 5%, 1% significance levels. 
 
 (1) (2) (3) (4) (5) 
𝑝𝑚𝑎(1)  7.62**     
 (2.13)     

𝑝𝑚𝑎(1) ⋅ 𝜎2  -5.03     
 (-1.31)     

𝑝𝑚𝑎(2)   7.52***    
  (3.29)    

𝑝𝑚𝑎(2) ⋅ 𝜎2    -5.57**    
  (-2.07)    

𝑝𝑚𝑎(4)    5.81***   
   (4.01)   

𝑝𝑚𝑎(4) ⋅ 𝜎2    -3.95**   
   (-2.43)   

𝑝𝑚𝑎(10)     2.87***  
    (3.55)  

𝑝𝑚𝑎(10) ⋅ 𝜎2      -1.83**  
    (-2.08)  

𝑝𝑚𝑎(20)      1.26*** 
     (2.59) 
𝑝𝑚𝑎(20) ⋅ 𝜎2       -0.98 
     (-1.56) 
𝜎2  1.04** 1.28*** 1.50*** 1.51** 1.56** 
 (2.12) (2.70) (2.97) (2.51) (2.24) 
Adj-𝑅2 (%) 0.93 1.62 2.10 1.77 1.09 
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Table 4: Out-of-sample predictability of Bitcoin returns   
 
Panels A and B present 𝑅DE

2  (out-of-sample 𝑅2) in percent for recursively estimated predictive 
regressions of the form: 𝑟3+1 = 𝑎 + 𝑏′𝑋3 + 𝜖3+1, where 𝑟3+1 denotes day-𝑡 + 1 return on Bitcoin. Both 
panels use 5-day-per week observations. In Panel A, the predictors are the 𝑝𝑚𝑎(𝐿) and in Panel B, they 
are 𝑉𝐼𝑋,𝐵𝐼𝐿𝐿,𝐷𝐸𝐹 , and 𝑇𝐸𝑅𝑀. Panel C uses the 7-day-per-week-observations and forecasts one week 
returns (𝑟3+1,3+7) using recursively estimated regressions of the form: 𝑟3+1,3+7 = 𝑎 + 𝑏′𝑋3 + 𝜖3+1,3+7. 𝑇0 
denotes the in-sample period as a percentage of the total sample. The MEAN is a simple combination 
forecast that averages the five moving average forecasts. The sample is 12/06/2010−6/30/2018 (n=1976 
in Panels A and B; n=2766 for Panel C). *, **, *** denotes 10%, 5%, 1% significance levels using the Clark-
West (2007) MSFE-adjusted statistic that tests the null of equal MSFE (𝑅DE

2 =0) against the competing 
model that has a lower MSFE (𝑅DE

2 >0). 
 

Panel A: 1-day horizon, 5-day-per-week observations 
𝑇0  𝑝𝑚𝑎(1) 𝑝𝑚𝑎(2) 𝑝𝑚𝑎(4) 𝑝𝑚𝑎(10) 𝑝𝑚𝑎(20) MEAN 
25% -0.32 -0.11 0.70** 1.01** 0.72** 0.83* 
50% -0.73 -0.27 0.08 0.31** 0.86*** 0.38* 
90% 0.94 1.13* 1.51* 0.81 0.70 1.42* 

Panel B: 1-day horizon, 5-day-per-week observations 
𝑇0  VIX BILL TERM DEF  MEAN 
25% -0.87 -0.21 -0.27 -0.01  -0.14 
50% -1.07 0.06 -0.06 -0.03  -0.13 
90% -0.77 -0.08 -0.02 0.17  -0.10 

Panel C: 1-week horizon, 7-day-per-week observations 
𝑇0  𝑝𝑚𝑎(1) 𝑝𝑚𝑎(2) 𝑝𝑚𝑎(4) 𝑝𝑚𝑎(10) 𝑝𝑚𝑎(20) MEAN 
25% -0.11 0.84** 3.67** 3.71** 1.66** 3.08** 
50% 1.05** 1.06** 2.38** 2.87** 4.13** 3.62** 
90% 2.70** 2.32* 2.57** 1.07* 1.66** 1.92** 
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Table 5: Performance of Bitcoin trading strategies  
 
This table presents summary statistics of the returns in excess of the 1-day risk-free rate on Bitcoin 
(BTC) and each of the MA(𝐿) Bitcoin strategies, which take a long position in Bitcoin if 𝑝𝑚𝑎3(𝐿) > 0, 
and the risk-free rate otherwise. EW denotes an equal-weighted portfolio of the individual 𝑀𝐴(𝐿) 
strategies. Means, standard deviations, and Sharpe ratios are annualized. The sample period is daily 
from 12/06/2010−6/30/2018 (7 days per week). Panel A presents full sample results (𝑛=2,764). Panels 
B and C, respectively, present results for the first (9/17/2010-8/28/2014, n=1,383) and second halves 
(8/29/2014-6/30/2018, 𝑛=1,383) of the sample. MDD denotes maximum drawdown. We use Ledoit and 
Wolf (2008) test of equality of Sharpe ratios that is robust to heteroskedasticity and serial correlation. 
*, **, *** denotes significance at the 10%, 5%, and 1% confidence levels, respectively. 
 

Panel A: Full-sample 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 193.18 106.20 1.82 -38.83 52.89 0.78 14.97 89.48 
MA(1) 196.54 79.33 2.48** -38.83 52.89 2.12 31.47 71.65 
MA(2) 187.38 79.20 2.37** -38.83 52.89 2.07 31.27 64.43 
MA(4) 187.34 82.67 2.27* -38.83 52.89 1.63 29.21 69.66 
MA(10) 195.70 88.50 2.21* -38.83 52.89 1.59 24.99 70.28 
MA(20) 188.77 94.96 1.99 -38.83 52.89 1.27 21.11 77.87 
EW 191.15 78.72 2.43*** -38.83 52.89 2.09 31.31 64.60 

Panel B: First-half 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 288.46 129.50 2.23 -38.83 52.89 0.77 12.47 89.48 
MA(1) 279.04 98.77 2.83* -38.83 52.89 1.85 24.58 71.65 
MA(2) 272.33 99.01 2.75 -38.83 52.89 1.88 24.32 64.43 
MA(4) 277.63 104.11 2.67 -38.83 52.89 1.45 22.16 69.66 
MA(10) 309.57 110.78 2.79** -38.83 52.89 1.48 19.20 70.28 
MA(20) 271.54 118.56 2.29* -38.83 52.89 1.17 16.26 77.87 
EW 282.02 99.41 2.84** -38.83 52.89 1.85 23.54 64.60 

Panel C: Second-half 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 97.89 75.80 1.29 -21.90 25.41 0.10 8.14 69.77 
MA(1) 114.03 52.90 2.16** -11.13 25.41 1.68 16.37 32.82 
MA(2) 102.43 52.02 1.97* -11.13 22.97 1.02 12.81 37.27 
MA(4) 97.05 52.81 1.84 -14.24 22.97 0.66 12.24 43.85 
MA(10) 81.83 57.67 1.42 -16.73 22.97 0.13 11.34 56.33 
MA(20) 106.01 62.82 1.69 -16.73 25.41 0.41 12.03 58.44 
EW 100.27 49.70 2.02** -11.13 22.97 1.00 12.10 40.05 
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Table 6: Alphas of MA Bitcoin strategies relative to buy-and-hold benchmark 
  
Panels A and B present regressions of the form: 𝑟𝑥3

MA(M) = 𝛼 + 𝛽 ⋅ 𝑟𝑥3 + 𝜖3, where 𝑟𝑥3 denotes the day-𝑡 
buy-and-hold excess return on Bitcoin and 𝑟𝑥3

MA(M) denotes the excess return on the MA(𝐿) Bitcoin 
strategy. Beneath each regression is the Sharpe ratio and appraisal ratio of the MA strategy as well as 
the utility gain from access to 𝑟𝑥3

MA(M) in addition to 𝑟𝑥3. EW denotes an equal-weighted portfolio of 
the MA strategies.  Panel A also reports the average daily turnover (TO) of the MA strategies and the 
one-way transaction cost (FEE) that would be required to eliminate the alpha of the MA strategy. Panel 
A presents results for the full sample period (12/06/2010−6/30/2018, 𝑛=2,766). Panel B presents results 
for the second half of the sample (n=1,383). Heteroskedasticity-robust t-statistics are below point 
estimates in parentheses. *, **, *** denotes significance at the 10%, 5%, and 1% confidence levels, 
respectively. 
 

Panel A: Full-sample 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽  0.56*** 0.56*** 0.61*** 0.69*** 0.80*** 0.64*** 
 (15.65) (15.52) (17.70) (23.02) (34.57) (24.08) 
𝛼(%) 0.24*** 0.22*** 0.19*** 0.17*** 0.09** 0.18*** 
 (4.66) (4.21) (3.75) (3.37) (2.12) (4.71) 
𝑅2  0.56 0.56 0.61 0.69 0.80 0.75 
Appraisal 1.68 1.52 1.35 1.26 0.81 1.71 
Utility gain(%) 85.53 69.39 55.45 47.84 19.70 88.15 
TO(%) 17.62 10.35 6.15 2.93 1.37 7.68 
FEE(%) 1.38 2.12 3.13 5.75 6.85 2.39 

Panel B: Second-half subsample 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽  0.49*** 0.47*** 0.49*** 0.58*** 0.69*** 0.54*** 
 (12.84) (12.51) (12.76) (14.70) (19.56) (19.29) 
𝛼(%) 0.18*** 0.15*** 0.14** 0.07 0.11** 0.13*** 
 (3.41) (2.90) (2.54) (1.31) (2.10) (3.27) 
𝑅2  0.49 0.47 0.48 0.58 0.69 0.68 
Appraisal 1.75 1.49 1.31 0.67 1.10 1.69 
Utility gain(%) 183.90 132.81 102.43 27.17 72.90 170.74 
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Table 7: Performance of trading strategies applied to Ripple and ETH 
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on Ripple (XRP) 
and each of the MA(𝐿) strategies applied to Ripple. Means, standard deviations, and Sharpe ratios are 
annualized. MDD denotes maximum drawdown. EW denotes an equal-weighted portfolio of the MA 
strategies. Panel B presents regressions of the form: 𝑟𝑥3

MA(M) = 𝛼 + 𝛽 ⋅ 𝑟𝑥3 + 𝜖3, where 𝑟𝑥3 denotes the 
day-𝑡 buy-and-hold excess return on XRP and 𝑟𝑥3

MA(M) denotes the excess return on the MA(𝐿) XRP 
strategy. Beneath each regression is the appraisal ratio of the MA strategy and the utility gain from 
access to 𝑟𝑥3

MA(M). In Panels A and B, the sample is 12/24/2013–6/30/2018 (𝑛=1,650).  Panels C and 
D, presents similar statistics as Panels A and B, respectively, but for strategies applied to Ethereum 
(ETH) instead of XRP. In Panels C and D, the sample is 12/28/2015–6/30/2018 (𝑛=916). We use the 
Ledoit and Wolf (2008) test of equality of Sharpe ratios. Heteroskedasticity robust t-statistics are below 
point estimates in parentheses.  *, **, *** denotes significance at the 10%, 5%, and 1% confidence levels, 
respectively. 
 

Panel A: Summary Statistics for XRP strategies 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
XRP 167.15 159.61 1.05 -46.01 179.37 7.54 141.85 90.22 
MA(1) 222.36 140.17 1.59** -46.01 179.37 10.90 234.94 77.60 
MA(2) 222.98 140.98 1.58** -46.01 179.37 10.85 230.83 72.41 
MA(4) 196.70 140.42 1.40 -46.01 179.37 10.93 234.77 57.93 
MA(10) 164.11 141.39 1.16 -46.01 179.37 10.76 228.61 81.63 
MA(20) 135.51 143.88 0.94 -46.01 179.37 10.24 213.68 85.50 
EW 188.33 136.34 1.38* -46.01 179.37 11.86 262.17 65.72 
  Panel B: Strategy alphas for XRP strategies 

 (1) (2) (3) (4) (5) (6) 

 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽  0.77*** 0.78*** 0.77*** 0.78*** 0.81*** 0.79*** 
 (10.99) (11.87) (11.36) (11.87) (13.83) (12.34) 
𝛼(%) 0.26*** 0.25*** 0.18** 0.09 -0.00 0.16** 
 (3.24) (3.20) (2.33) (1.15) (-0.01) (2.49) 
𝑅2  0.77 0.78 0.78 0.78 0.81 0.84 
Appraisal 1.40 1.41 1.01 0.50 0.00 1.06 
Utility gain(%) 178.29 180.09 92.91 22.97 0.00 102.93 
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Table 7: (Cont’d)   
 

Panel C: Summary Statistics for ETH strategies 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
ETH 334.16 132.00 2.53 -27.06 35.36 0.81 6.90 73.48 
MA(1) 319.09 107.37 2.97 -27.06 35.36 1.68 12.49 42.36 
MA(2) 310.48 108.48 2.86 -27.06 35.36 1.61 12.15 43.11 
MA(4) 345.23 111.45 3.10* -27.06 35.36 1.41 11.44 56.81 
MA(10) 247.73 116.86 2.12 -27.06 35.36 1.10 10.13 75.23 
MA(20) 302.12 122.65 2.46 -27.06 35.36 1.05 8.77 69.92 
EW 304.93 107.28 2.84 -27.06 35.36 1.57 12.23 50.41 

 Panel D: Strategy alphas for ETH strategies 
 (1) (2) (3) (4) (5) (6) 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽  0.66*** 0.67*** 0.71*** 0.78*** 0.86*** 0.74*** 
 (17.83) (18.49) (21.39) (26.36) (39.89) (27.89) 
𝛼(%) 0.27** 0.23** 0.29*** -0.04 0.04 0.16** 
 (2.55) (2.23) (2.90) (-0.41) (0.50) (2.17) 
𝑅2  0.66 0.67 0.71 0.78 0.86 0.82 
Appraisal 1.57 1.37 1.79 0.00 0.31 1.30 
Utility gain(%) 38.39 29.39 50.07 0.00 1.48 26.25 
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Table 8:  Performance of trading strategies applied to NASDAQ over 1996–2005 
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on NASDAQ and 
each of the MA(𝐿) NASDAQ strategies. Means, standard deviations, and Sharpe ratios are annualized. 
EW denotes an equal-weighted portfolio of the MA strategies. MDD denotes maximum drawdown. Panel 
B presents regressions of the form: 𝑟𝑥3

MA(M) = 𝛼 + 𝛽 ⋅ 𝑟𝑥3 + 𝜖3, where 𝑟𝑥3 denotes the day-𝑡 buy-and-hold 
excess return on NASDAQ and 𝑟𝑥3

MA(M) denotes the excess return on the MA(𝐿) NASDAQ strategy. 
Beneath each regression is the appraisal ratio of the MA strategy and the utility gain from access to 
𝑟𝑥3

MA(M). The sample period is 1/2/1996−12/30/2005 (𝑛=2,519). Panel C present results similar to Panel 
A using over the 1998–2002 subsample (𝑛=1,256). We use the Ledoit and Wolf (2008) test of equality 
of Sharpe ratios. Heteroskedasticity-robust t-statistics are below point estimates in parentheses.  *, **, 
*** denotes significance at the 10%, 5%, and 1% confidence levels, respectively. 
  

Panel A: Summary Statistics of NASDAQ strategies 
 Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 

NASDAQ 8.53 29.01 0.29 -9.69 14.15 0.19 7.14 77.93 
MA(1) 9.32 18.34 0.51 -6.23 8.10 0.07 9.55 42.73 
MA(2) 12.80 17.63 0.73* -6.23 8.10 0.04 9.17 42.08 
MA(4) 13.34 17.41 0.77* -5.59 8.10 -0.07 8.36 25.66 
MA(10) 13.84 17.45 0.79* -7.66 4.92 -0.40 7.37 33.81 
MA(20) 7.78 17.20 0.45 -7.66 4.28 -0.50 7.68 45.62 
EW 11.42 15.09 0.76** -5.58 4.86 -0.16 5.97 34.49 

 Panel B: Strategy alphas 
 (1) (2) (3) (4) (5) (6) 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽  0.40*** 0.37*** 0.36*** 0.36*** 0.35*** 0.37*** 
 (16.66) (16.23) (16.28) (16.53) (16.32) (19.97) 
𝛼(%) 0.02 0.04** 0.04** 0.04** 0.02 0.03** 
 (1.32) (2.18) (2.33) (2.44) (1.09) (2.47) 
𝑅2  0.40 0.37 0.36 0.36 0.35 0.50 
Appraisal 0.42 0.69 0.74 0.77 0.34 0.78 
Utility gain(%) 199.85 548.18 627.66 687.82 137.42 105.47 

Panel C: Summary Statistics of NASDAQ strategies over 1998–2002 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
NASDAQ -0.13 37.18 0.00 -9.69 14.15 0.23 5.08 77.93 
MA(1) 9.62 23.07 0.42 -6.23 8.10 0.06 7.17 42.73 
MA(2) 10.69 21.93 0.49* -6.23 8.10 0.05 7.14 42.08 
MA(4) 12.84 21.47 0.60* -5.59 8.10 -0.07 6.62 25.66 
MA(10) 11.89 21.12 0.56* -7.66 4.92 -0.43 6.10 33.81 
MA(20) 7.11 19.98 0.36 -7.66 4.28 -0.48 6.59 39.75 
EW 10.43 18.23 0.57** -5.58 4.86 -0.15 4.83 34.49 
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Table 9: Predictability of returns and performance of MA strategies across size portfolios 
 
We apply our MA strategies to each of the three value-weighted Fama and French (1993) size portfolios, 
“Small”, “Medium” and, “Big”, which are formed based on the NYSE 30th- and 70th-percentile 
breakpoints of market capitalization. Panel A presents heteroskedasticity-robust t-statistics from 
regressions of daily excess portfolio returns on the 𝐿-week price-to-moving average ratios:   

𝑟𝑥3+1 = 𝑎 + 𝑏 ⋅ 𝑝𝑚𝑎3(𝐿) + 𝜖3+1. 
Panel B presents Sharpe ratios for the buy-and-hold (BH) return on each portfolio as well as each of the 
MA strategies and the equal-weighted portfolio (EW) of the MA strategies. Panel C presents alphas, 
with heteroskedasticity-robust t-statistics in parentheses, from regressions of the form: 

𝑟𝑥3
PQ(M) = 𝛼 + 𝛽 ⋅ 𝑟𝑥3 + 𝜖3. 

The sample period is July 1, 1963 through June 30, 2018. 
 

Panel A: t-statistics from predictive regressions 
 MA(1) MA(2) MA(4) MA(10) MA(20) 

Small 6.03 5.90 5.87 5.23 3.96 
Medium 4.43 3.42 3.06 2.44 1.67 
Big -0.10 -0.92 -0.96 -0.83 -0.67 

Panel B: Sharpe ratios of MA strategies 
 BH MA(1) MA(2) MA(4) MA(10) MA(20) EW 

Small 0.50 2.05 1.90 1.75 1.52 1.16 1.91 
Medium 0.51 1.73 1.52 1.27 1.10 0.87 1.49 
Large 0.39 0.73 0.62 0.53 0.48 0.47 0.65 

Panel C: Alphas of MA strategies 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
Small 18.18 16.45 14.80 12.46 8.91 14.16 
 (16.52) (14.99) (13.53) (11.32) (8.01) (16.55) 
Medium 14.75 12.35 9.76 8.03 5.70 10.12 
 (13.44) (11.31) (8.92) (7.33) (5.17) (11.93) 
Big 4.87 3.74 2.81 2.29 2.22 3.18 
 (4.53) (3.50) (2.64) (2.16) (2.07) (3.90) 
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Table 10: Predictability of returns and performance of MA strategies across portfolios formed 
on size and analyst coverage 
 
At the end of each year, we form nine value-weighted portfolios formed as the intersections of two 
independent tercile sorts of all U.S. common stocks into three portfolios based on each of market 
capitalization (“Small”, “Medium”, and “Big”) and the number of analyst forecasts over the year (“Low”, 
“Medium”, and “High”). The first three columns of the table present heteroskedasticity-robust t-statistics 
from regressions of daily excess portfolio returns on the 𝐿-week price-to-moving average ratios:   

𝑟𝑥3+1 = 𝑎 + 𝑏 ⋅ 𝑝𝑚𝑎3(𝐿) + 𝜖3+1. 
The fourth column of the table presents heteroskedasticity-robust GMM-based t-statistics of the 
difference between the 𝑏 from to the “Low” portfolio in the row minus the 𝑏 from the “High” portfolio 
in the row. The sample period is January 2, 1985 through June 29, 2018.  
 

MA(1) 
  Low Med High Low-High 

Small 5.24 5.04 4.93 2.95 
Med 1.48 1.83 2.72 -1.75 
Big 0.19 0.00 -1.94 4.08 

MA(2) 
  Low Med High Low-High 

Small 5.18 4.87 4.39 2.95 
Med 1.16 1.34 1.94 -1.17 
Big -0.45 -0.63 -2.16 3.58 

MA(4) 
  Low Med High Low-High 

Small 5.19 4.71 4.19 2.78 
Med 1.18 1.33 1.68 -0.66 
Big -0.45 -0.64 -1.83 2.97 

MA(10) 
  Low Med High Low-High 

Small 4.98 4.40 3.32 2.80 
Med 1.01 1.16 1.44 -0.47 
Big -0.08 -0.39 -1.39 2.76 

MA(20) 
  Low Med High Low-High 

Small 3.94 3.10 2.29 2.35 
Med 0.43 0.47 0.71 -0.31 
Big 0.10 -0.43 -1.14 2.56 
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Table 11: Volume and technical trading indicators   
 
This table presents regressions of the form:   

Δ log(𝑣𝑜𝑙𝑢𝑚𝑒)3 = 𝑎 + 𝑏 ⋅ 𝑋3 + 𝑐 ⋅ |rt|+ 𝜖3, 
Δ log(𝑣𝑜𝑙𝑢𝑚𝑒)3 = 𝑎 + 𝑏 ⋅ 𝑋3 + 𝑐 ⋅ |rt| +  𝑑 ⋅ Δ log(𝑣𝑜𝑙𝑢𝑚𝑒)3−1 + 𝜖3, 

where 𝑣𝑜𝑙𝑢𝑚𝑒3 denotes the trading volume in Bitcoin on day 𝑡, |𝑟3| denotes the absolute return on Bitcoin 
on day 𝑡, and 𝑋3 denotes one of two predictors. The second equation introduces lagged volume to 
accommodate for possible serial correlation. In column (1), 𝑋3 is the sum (∑ ∣Δ𝑆M,3∣M ) of the absolute 
turnovers ∣Δ𝑆M,3∣ from each of the MA(𝐿) strategies. In column (2), 𝑋3 is the cross-sectional standard 
deviation (𝜎M(Δ𝑆M,3)) of Δ𝑆M,3, a measure of the “disagreement” among technical traders using the 
different MA strategies (𝐿 = 1, 2, 4, 10, or 20 weeks). In column (3), 𝑋3 includes ∑ ∣Δ𝑆M,3∣M  and 
𝜎M(Δ𝑆M,3). The sample is 12/27/2013–6/30/2018 (𝑛=1,647). Heteroskedasticity-robust t-statistics are 
in parentheses. 
 

Panel A: Determinants of Volume, without controlling for lagged volume 
 (1) (2) (3) 

∑ (|Δ𝑆M,3|)M   0.03  0.07 
 (4.38)  (1.47) 
𝜎M(Δ𝑆M,3)   0.15 0.05 
  (3.65) (3.46) 
|𝑟3|  4.90 5.03 4.73 
 (11.94) (11.76) (11.58) 
Adj-𝑅2  0.17 0.16 0.17 

Panel B:   Determinants of Volume, controlling for lagged Volume 
 (1) (2) (3) 

∑ (|Δ𝑆M,3|)M   0.03  0.04 
 (3.56)  (3.85) 
𝜎M(Δ𝑆M,3)   0.12 0.16 
  (2.78) (1.80) 
|𝑟3|  5.07 5.18 5.04 
 (13.05) (12.91) (12.69) 
Δ log(𝑣𝑜𝑙𝑢𝑚𝑒)3−1  -0.23 -0.23 -0.23 
 (10.13) (-10.21) (10.81) 
Adj-𝑅2  0.22 0.22 0.22 

 
 
 
 


