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Abstract. A panel of ex-ante forecasts of a single time series is modeled as a
dynamic factor model, where the conditional expectation is the single unobserved
factor. When applied to out-of-sample forecasting, this leads to combination
forecasts that are based on methods other than OLS. These methods perform
well in a Monte Carlo experiment. These methods are evaluated empirically in
a panel of simulated real-time computer-generated univariate forecasts of U.S.
macroeconomic time series.
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1 Introduction

A provocative finding in the literature on combination forecasts is that, in empir-
ical situations with real forecasts, simple averages of forecasts often provide sub-
stantial improvements over individual forecasts and, even more strikingly, sim-
ple averages often outperform more sophisticated statistical combination meth-
ods; see for example Clemen and Winkler (1986), Guerard and Clemen (1989),
Diebold and Pauly (1990), and the review articles by Granger (1989), Clemen
(1989) and Diebold and Lopez (1995). This poses a puzzle, because the theoret-
ical work on combination forecasts by Bates and Granger (1969), Granger and
Ramanathan (1984), and others argues that statistical methods such as ordinary
least squares (OLS) regression should improve upon simple averaging.

The authors thank Frank Diebold, Bruce Hansen, Serena Ng, and Norm Swanson for helpful sug-
gestions and discussions. This research was supported in part by National Science Foundation grants
no. SBR-9409629 and SBR-9730489.
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This paper provides some new theoretical results that shed some light on
this puzzle and which suggest alternative statistical methods for improving com-
bination forecasts. These results follow from modeling the panel of individual
forecasts as an approximate dynamic factor model, where the unobserved factor
is the true conditional expectation. The dynamic factor structure has important
implications for estimation of the forecast combination weights. Assuming that
the loss is the squared out-of-sample forecast error (MSFE), we show that the op-
timal estimator of the linear combination weights minimizes a particular weighted
average of the elements of the variance-covariance matrix of the estimator. Ex-
amination of this expression suggests that this weighted average will be similar
to the trace of the covariance matrix, at least in some limiting cases. This sug-
gests that, under this loss function, OLS is no longer admissable when there are at
least three forecasts to be combined. Instead, alternative estimation methods, such
as James-Stein (1961) estimation, ridge regression, and methods that explicitly
exploit the dynamic factor structure can in theory provide significant improve-
ments over simple average and, especially, OLS combination forecasts. Clemen
and Winkler (1986) and Diebold and Pauly (1990) have appealed to Bayesian
arguments to justify the use of shrinkage-type estimators for combination fore-
casting. In contrast, our results provide a theoretical justification grounded in
classical statistical theory for the use of such estimators.1

In Sect. 3, these implications are examined in a Monte Carlo experiment.
The results are largely consistent with the theoretical predictions. We find that
a wide range of methods produce large improvements over OLS combinations,
particularly when the number of forecasts to be combined is large. Motivated
by the dynamic single factor model and theoretical results in Stock and Watson
(1998b), principal components regression is also considered, and in this Monte
Carlo experiment it is found to produce most frequently the best combination
forecasts of all methods considered. Not surprisingly, a robust combination es-
timator, the median forecast, has lower risk than the simple average when the
distribution of forecasts has some large outliers.

These theoretical predictions are examined in a panel of forecasts in Sect. 4.
This dataset consists of univariate forecasts for 215 U.S. monthly macroeco-
nomic time series. The dataset is taken from Stock and Watson (1998a), where
it was developed for the purpose of comparing linear vs. nonlinear univariate
forecasting methods. For each series, the panel consists of 49 monthly forecasts,
computed in a way to simulate real-time forecasting (ex-ante forecasts). The
best combination forecasts provide considerable improvements over the best in-
dividual forecasts, and many of the combination methods provide similar good
performance. However, some puzzles remain.

1 Figlewski (1983) and Figlewski and Urich (1983) proposed using a single-factor model for the
combination of forecasts. Our formulation differs from theirs in several ways. Most importantly, they
model the forecast errors by a factor model while we focus on the forecasts themselves. Our focus
is also different as we use the model to simplify the risk function to suggest improvements to OLS
combining methods.
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2 Theoretical framework

2.1 Risk for a panel of forecasts

Notation and assumptions:Let yt , t = 1, . . . , T be a strictly stationary univariate
time series with unconditional mean zero. LetF t

s denote the information set
consisting of{ys, ys+1, . . . , yt , Zs, Zs+1, . . . , Zt}, whereZt is a multiple time series
available for forecasts made at date t. If the forecasts are univariate,{Zt} is absent
from this information set.

We focus on mean squared forecast error loss, and for notational convenience,
this section only considers one-step ahead forecasting. The loss from using a
forecastft to predictyt+1 is,

L(ft , yt+1) = (yt+1 − ft )
2(2.1)

and the risk is,
R(ft ) = E(yt+1 − ft )

2 .(2.2)

Under (2.2), the optimal forecast ofyt+1 given F t
−∞ is its conditional expec-

tation, E(yt+1|F t
−∞) ≡ µt , andyt+1 can be written,

yt+1 = µt + εt+1 ,(2.3)

whereE(εt+1|F t
−∞) = 0.

We consider combination forecasts based on a panel ofm individual one-
step ahead forecasts ofyt+1, the i -th of which is denotedyt+1|t,i . We make the
following assumptions on these forecasts: (1) the forecastsyt+1|t,i are assumed to
be true ex-ante forecasts so that they are a function only ofF t

1; (2) the forecasts
can be written,

yt+1|t,i = gi (F
t
t−p, θ̂i ) ,(2.4)

wherep < t andθ̂i is a finite-dimensional parameter vector that is either imposed
a-priori or is estimated usingF t

1; (3) the forecasts are unconditionally unbiased,
that is,Eyt+1|t,i = Eyt+1; and (4) neither the data nor the forecasts are subject to
revision.

These assumptions are not very restrictive. Assumption (1) is just an assump-
tion about the timing of forecasts.

Assumption (2) is general enough to include model-based forecasts with
econometrically estimated parameters, model-based forecasts that incorporate
data-based selection criteria such as the AIC, model-based forecasts with judg-
mentally imposed parameters, and partially or entirely judgmental forecasts. Im-
portantly, it is not assumed thatgi is correctly specified, so that in generalgi

will not generate the optimal forecast. The most restrictive aspect of (2.4) is that
the forecasting method (the functiongi ) is assumed to be constant over time.

Assumption (3) is readily relaxed, at the cost of additional notation, by allow-
ing Egi /= 0 and including intercept terms in the relevant expressions. Relaxing
assumption (4) would greatly increase the notational complexity but would not
change the basic argument of this section.
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Given these assumptions, it is possible to decompose the forecast error of the
i -th forecast into three terms. Letθ0

i denote the value ofθi that minimizes (2.2)
when ft has the formgi (F t

t−p, θi ). This can be thought of as the true value of
θi in the sense that it is the unknown value ofθ that provides the forecast with
the lowest risk (expected MSFE) among all forecasts with this functional form.
With this notation, we can write,

yt+1|t,i = µt + ζit + νit ,(2.5)

whereζit = gi (F t
t−p, θ

0
i ) − µt andνit = gi (F t

t−p, θ̂i ) − gi (F t
t−p, θ

0
i ).

The expression (2.5) represents the difference between thei -th forecast and
the optimal forecast as the sum of two components. The first,ζit , represents
model specification error; if thei -th family of models contains the true condi-
tional expectation function, thenζit = 0, but if there is model specification error
(which in practice there will be),ζit /= 0 for at least somet . The second com-
ponent,νit , represents estimation error. Ifθ0 is a parameter that is consistently
estimated by nonlinear least squares, and ifgi has a continuous first derivative,
then corr(ζit , νit ) = 0 to first order as a consequence of the first order conditions
for the estimation problem.

In general,µt will be correlated withζit +νit . For example, if thei -th forecast
tends to be less than the optimal forecast when the optimal forecast is large, either
because of specification or estimation error, then this correlation will be negative.
Because of this correlation,E(yt+1|t,i |µt ) /= µt . If (µt , ζit +νit ) are jointly normally
distributed, then this conditional expectation is linear, and (2.5) implies,

yt+1|t,i = λi µt + eit ,(2.6)

whereλi = 1 + cov(ζit +νit , µt )/var(µt ) and whereeit is normally distributed and
is independent ofµt . If (µt , ζit + νit ) are not jointly normal, then (2.6) still holds
with corr(µt , eit ) = 0, butλi µt is interpreted as the linear projection ofyt+1|t on
µt rather than the conditional expectation andeit is not normally distributed. It
is convenient to write (2.6) in matrix notation:

Yt+1|t = Λµt + et ,(2.7)

whereYt+1|t denotes them-vector of forecasts withi -th elementyt+1|t,i , Λ is a
m-vector with i -th elementλi , andet = (e1t , . . . , emt)′.

Risk for linearly combined forecasts:The primary focus of this paper is on the
construction of out-of-sample forecast foryT+1 using a combination of the indi-
vidual forecasts. Here we consider the linear combination forecast,

φT (β) = β′YT+1|T .(2.8)

Becauseyt is assumed to have mean zero, the intercept is excluded from (2.8),
although in practice one could be added.

Two questions arise in considering (2.8): given the structure (2.7), what is
the optimal population value ofβ, and what is the best way to chooseβ when
one has a panel of forecasts?
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It is straightforward to derive the optimal value ofβ, β0, using the represen-
tation (2.7). Under squared error loss the risk (2.2) is

R(φT (β)) = E(yT+1 − β′YT+1|T )2

= E[εT+1 + µT − β′(ΛµT + eT )]2

= σ2
ε + (β′Λ − 1)2σ2

µ + β′Σeβ ,(2.9)

whereσ2
µ = Eµ2

t andΣe = Eet e′
t , and where the final expression follows because

εt+1, µt , andet are all mutually uncorrelated. Solving the minimization problem
yields,

β0 = [Σe + σ2
µΛΛ′]−1σ2

µΛ(2.10)

as the vector of weights that minimizes the risk (2.2) among all combination
forecasts of the form (2.8). This result confirms the general finding of the forecast
combination literature that all forecasts, even poor ones, in general receive some
weight in optimal combination forecasts.

Becauseβ0 is unknown, the linear combination forecast based onβ0 is in-
feasible. Letβ̃ be a feasible weighting vector (either a function of data through
dateT or a constant vector imposed a-priori) so thatβ̃′YT+1|T is a feasible linear
combination forecast. Now

R(β̃′YT+1|T ) = R(φT (β0))

+E[(β̃ − β0)′YT+1|TY ′
T+1|T (β̃ − β0)]

−2cov[(β̃ − β0)′YT+1|T , yT+1 − β′
0YT+1|T ] .(2.11)

The termR(φt (β0)) does not depend oñβ. Whenβ̃ is estimated from past data,
for example ifβ̃ is estimated by OLS, then the correlation betweenβ̃ and both
yT+1 and YT+1|T can be expected to be small. If these correlations are zero, the
last term on the right hand side of (2.11) vanishes and the expression simplifies
to,

R(β̃′YT+1|T ) = tr(Vβ̃EYT+1|TY ′
T+1|T ) + γ ,(2.12)

whereγ does not depend oñβ, Vβ̃ = E(β̃ − β0)(β̃ − β0)′ and tr(•) denotes the
trace. The representation (2.7) permits additional simplification of (2.12),

R[β̃′YT+1|T ] = Λ′Vβ̃Λσ2
µ + tr(Vβ̃Σe) + γ .(2.13)

2.2 Approximate factor model of the forecasts

Expression (2.7) represents each forecast as having two components, the unob-
served conditional mean (times the weightλi ) and an idiosyncratic component,
eit . If some additional restrictions hold on the distribution of these idiosyncratic
components, then this representation constitutes a dynamic factor model for the
panel of forecasts. Because (2.7) was obtained under weak conditions, these
stronger, factor model restrictions need not hold for any particular panel of fore-
casts. Nevertheless, because factor analytical methods provide a convenient way
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to handle large numbers of series that have a common element (which is the
case here), it is useful to explore the statistical consequences of (2.7) satisfy-
ing these further restrictions so that the panel of forecasts has a factor model
representation.

Two such sets of restrictions appear in the literature on dynamic factor mod-
els. Under the stronger of the two, the idiosyncratic errors{eit } are mutually
uncorrelated at all leads and lags (Eeit ejs = 0, i /= j , all t , s) and are uncorre-
lated with the factor (Eeit µs = 0, all i , t , s). This yields the exact dynamic factor
model studied by Geweke (1977) and Sargent and Sims (1977). In the forecast-
ing environment studied here, there is no reason that these strong conditions
should be satisfied. However, when the number of forecasts (m) is large, many
factor analytic methods continue to be useful under weaker conditions. These
weaker conditions essentially permit some cross-sectional dependence among
the idiosyncratic errors, and between these terms and lags ofµt , and conditions
like these characterize so-called approximate factor models; see Chamberlain and
Rothschild (1983), Connor and Korajczyk (1986, 1988, 1993), Forni and Reichlin
(1995), Stock and Watson (1998b). This suggests that even if the exact dynamic
factor model assumptions do not strictly hold, that model may still yield valuable
insights into the forecast combination problem studied here.

The expressions for the optimal linear combination (2.10) and the risk of a
feasible linear combination forecast simplify when the panel of forecasts has an
exact dynamic factor representation. If the idiosyncratic errors have the same
variances, soΣe = σ2

eIm (whereIm is them×m identity matrix), then (2.10) and
(2.13) become,

β0 = [σ2
eIm + ΛΛ′σ2

µ]−1σ2
µΛ(2.14)

R[β̃′YT+1|T ] = σ2
µΛ′Vβ̃Λ + σ2

etrVβ̃ + γ .(2.15)

In the special case thatΛ = (1, . . . , 1)′ ≡ ι′, all forecasts are equally accurate
andβ0 = [σ2

eIm + ιι′σ2
µ]−1σ2

µι, so that all forecasts receive equal weight. Even in
this case, however, the elements ofβ0 in general differ from 1/m, and approach
1/m only in the limit thatσ2

e/σ2
µ → 0 (so that all forecasts equal the conditional

expectation).

2.3 Implications for the estimation ofβ

The expressions for the risk of the feasible linear combination forecast provide
some guidance about the optimal estimation ofβ̃. In the general case (2.13), the
risk is weighted average of the elements of the variance covariance matrix of
β̃, where the weights are a function of the unknown parameters of the covari-
ance structure of the forecasts. Although this risk function depends on unknown
nuisance parameters, whenm is large this risk isnot the risk that leads to es-
timation by ordinary least squaresβ (cf. Lehmann [1983]). Thus there is no
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reason to expect OLS estimation ofβ to provide good combination forecasts for
m sufficiently large.2

The special case (2.15) provides more concrete guidance. Ifσ2
e is sufficiently

large, the expression is dominated by trVβ̃ . When m ≥ 3 and the risk is trVβ̃ ,
OLS is inadmissable. Intuitively, the inadmissability of OLS arises because, for
m ≥ 3, the loss function trVβ̃ allows for a tradeoff between bias and variance.
Among unbiased linear estimators, OLS remains efficient in the usual sense of
multivariate regression. However, allowing estimators that shrink towards par-
ticular parameter values, and thus have bias but smaller variance, can reduce
trVβ̃ . The OLS estimator is dominated by James-Stein estimators (Stein 1955;
James and Stein 1961). A related technique is ridge regression, which is similar to
Bayesian shrinkage estimation. A common concern with these techniques in prac-
tice is that they entail shrinkage towards a prespecified parameter vector, which
is in general unknown and unavailable. In the current application, (2.15) and
the subsequent discussion suggests shrinkage towards a vector of equal weights.
This provides a formal justification for this intuitive notion that is prevalent in
the forecast combination literature (cf. Diebold and Lopez 1995).

The other implication of (2.15) for the estimation ofβ is that improved
estimates might be obtained by exploiting the potential factor structure of the
forecasts. Stock and Watson (1998b) consider the estimation of the factors in
approximate dynamic factor models. An estimator for which they provide theo-
retical results, principal components regression, is discussed in the next section.
Principal components regression is typically motivated as an ad-hoc device for
solution of multicollinearity. With this as motivation, latent root regression (es-
sentially principal components regression) was applied to forecast combination
by Guerard and Clemen (1989). The factor analytic structure (2.7) provides a
formal reason to expect multicollinearity in the panel of forecasts. However, the
forecasts could still have the factor analytic structure, and thus principal compo-
nents regression could apply, even if the forecasts are themselves only moderately
correlated. Thus multicollinearity per se is not relevant to our motivation for this
method. Moreover, the factor model representation and the results in Stock and
Watson (1998b) indicate that only the first principal component is needed for
forecasting, at least whenm is large.

Because the risk function depends on the unknown parameters of the factor
model, it appears that the performance of various estimators must be evaluated
numerically for a particular set of parameters. Such an evaluation is conducted
using Monte Carlo techniques in the next section.

2 A similar point is made by Amemiya and Morimune (1974) in their study of order determination
in distributed lag models. They consider a risk function which is essentially (2.11) and discuss how
this provides motivation for considering estimators other than OLS; also see the discussion in Hendry
et al. (1984), p. 1063.
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3 Monte Carlo analysis

3.1 Design

The objectives of the Monte Carlo analysis reported in this section are to evaluate
the risk of various linear combination forecasting methods with Gaussian errors,
to consider the effect of heavy tails in the error distribution on this risk, and
to examine the performance of a nonlinear forecast combination method that is
robust to heavy tailed error distributions (the median). This is done by examining
the performance of various feasible and infeasible combination forecasts within
a dynamic factor model. In most cases, the dynamic factor model is exact. In
some trials, however, the sensitivity of these results to the exact dynamic factor
specification is explored by allowing the factor loadings to change over time.

Design.The variable to be forecast,yt , and the panel of forecasts are taken to
follow a factor model with time-varying factor loadings,

yt+1 = µt + εt+1(3.1)

yt+1|t,i = λit µt + eit(3.2)

λit = λit −1 + ζit(3.3)

where εt+1 is i.i.d. N (0, 1), µt is i.i.d. N (0, σ2
µ), ζit is i.i.d. N (0, σ2

ζ), and eit

has the mixture of normals distribution, whereeit is distributedN (0, σ2
e) with

probability 1− π and is distributedN (0, 25σ2
e) with probability π. The random

variables (µt , eit , ζit , εt+1) are mutually independent.
The initial factor loadings{λi 0} vary across series. To generate this dis-

persion,{λi 0} were drawn independently from aN (λ̄, σ2
λ) distribution, and are

distributed independently of (µt , eit , ζit , εt+1). In most cases,σ2
ζ = 0, so the fac-

tor loadings are constant over time (λit = λi 0, all t); in this case, the panel of
forecasts follows an exact factor model.

The free parameters which vary in the Monte Carlo design are the sample
sizeT, the number of forecastsm, λ̄, σ2

λ, σ2
e, σ2

µ, σ2
ζ , andπ.

The risk of a particular estimator, saỹβ, was computed as follows: (i){λit }
were drawn,i = 1, . . . , m, t = 0, . . . , T+r ; (ii) realizations ofyt+1 andyt+1|t,i were
drawn fort = 1, . . . , T +r ; (iii) β̃ was computed using the firstT of these realiza-
tions; (iv) φt (β̃) = β̃′Yt+1|t was computed fort = T +1, . . . , T +r ; and (v) a Monte

Carlo realization of the riskR(β̃) was computed asr −1∑T+r
T+1[yt+1 −φt (β̃)]2. For

each estimator and set of parameter values, steps (i)–(v) were repeated for 10,000
Monte Carlo repetitions withr = 10.

3.2 Combination forecasts

Six forecast combination schemes were considered: equal weighting; OLS; the
James-Stein estimator; ridge regression; a method based on preliminary estima-
tion of the factor; and the median. In addition, as benchmarks two infeasible
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combination forecasts were computed: the conditional mean,µt , and the optimal
linear combination forecast.

Optimal infeasible linear combination.The optimal infeasible linear combination
forecast isβ′

0t YT+1|T , whereβ0t is obtained from (2.14) withΛt = (λ1t , . . . , λmt)′

replacingΛt . This is the minimum MSFE linear combination forecast whenΛt

is known. BecauseΛt is known in the Monte Carlo design, but is unknown in
applications, this combination forecast is infeasible in applications.

Equal weighting.For the equal-weighting estimator, the weight vector is fixed
a-priori to beβequal = (1/m, . . . , 1/m).

OLS. Another combination method that has received considerable attention is
estimation of the weights by OLS. The OLS weighting vector,β̂OLS, is the OLS
estimator ofβ in the regression,

yt+1 = β′Yt+1|t + ut+1 ,(3.4)

whereut+1 is an error term.

James-Stein estimator.The discussion of the risk function in Sect. 2.2 pointed
toward alternative estimation methods, one of which is James-Stein estimation.
The specific James-Stein estimator considered is the optimal (minimum risk)
James-Stein estimator, shrunk toward equal weighting (e.g. Judge et al. 1980,
p. 68):

β̂JS = βequal+ {1 − [(m − 2)/(T − m + 2)]W−1}
(
β̂OLS − βequal

)
,(3.5)

whereW = (β̂OLS − βequal)′(
∑T

t=1 Yt+1|t Y ′
t+1|t )(β̂

OLS − βequal)/
∑T

t=1(yt+1 − β̂OLS′

Yt+1|t )2.

Ridge regression.The ridge regression estimator, shrunk towards equal weighting,
is,

β̂RR =

(
cIm +

T∑
t=1

Yt+1|t Y ′
t+1|t

)−1( T∑
t=1

Yt+1|t yt+1 + cβequal

)
.(3.6)

The parameterc was set toc = ktr(
∑T

t=1 Yt+1|t Y ′
t+1|t )/m, wherek = 0.1, 0.5, and

1.0. A value ofk = 1 can be considered large in the sense that the weight on
the identity matrix equals the average diagonal element in the regressor moment
matrix.

Principal component (factor analytic) forecasts.The factor analytic forecasts ex-
ploit the factor structure of the panel of forecasts first to compute an estimator of
µt . Stock and Watson (1998b) show that, under general conditions that include
time varying factor loadings, the principal component of the forecast second mo-
ment matrix will be a uniformly consistent estimator ofµt as the sample size
andm get large, and OLS regression with this principal component will produce
asymptotically efficient forecasts. The principal component forecast is produced
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by first estimatingΛ by the eigenvector corresponding to the largest eigenvalue of
T−1∑T

t=1 Yt+1|t Y ′
t+1|t ; call this Λ̂. Then the factorµt is estimated as ˆµt = Λ̂′Yt+1|t .

The next step is to use OLS to estimateα in the regression,

yt+1 = αµ̂t + errort+1(3.7)

over the periodt = 1, . . . , T − 1. The factor analytic linear combination is thus
given by,

β̂PC = α̂Λ̂ .(3.8)

Median.With nongaussian errors, linear combination estimators no longer need
be optimal, and in particular for distributions with sufficiently heavy tails robust
estimators such as the median are more efficient than the simple average. The
final combination estimator considered is therefore the median forecast at datet .

3.3 Results

The risks of the various combination forecasts for different sets of design pa-
rameters are summarized in Table 1. The risks are relative to the variance ofεt ,
which is the risk of the infeasible forecast based on the conditional meanµt ;
thus the efficient forecast has a relative risk of 1.00.

First consider the results forT = 100 and constant factor loadings (σζ = 0).
These results are generally consistent with the theoretical analysis of the previous
section. Whenm = 2, OLS is typically as efficient as the most efficient forecast,
or nearly so. However, the relative performance of OLS deteriorates sharply as
the number of forecasts in the panel grows. ForT = 100 andm = 20, for example,
the relative risk of the OLS forecast is never less than 1.31, while the relative
risk of the other forecasts is typically 1.1 or less.

For m ≥ 10, the equal-weighted forecasts do very well overall in this com-
parison. Indeed, the equal-weighted forecast performs well for largem even when
λ̄ = 0.6 andσλ = 0.15; this is surprising because as̄λ decreases, the optimal
weight vector (β0) is far from 1/m. For smallm, the estimation methods such as
OLS have fewer parameters to estimate, and form = 2 equal-weighting typically
does much worse than any of the estimation methods.

The risk of the median is nearly as low as the risk of the mean in the cases that
π = 0, and as expected the gap decreases asπ increases. Indeed, the median has
the smallest risk of all combination forecasts in the heavy-tailed case (π = 0.05)
for m ≥ 5.

The ridge regression and James-Stein forecasts also have low risks, especially
for large m. The ridge regression forecast with the greatest shrinkage towards
equal weighting (k = 1.0) generally has a smaller risk than the ridge regression
forecasts with less shrinkage.

The PC forecast performs very well, for both large and smallm; in the cases
considered in Table 1, the PC forecast most frequently has the smallest risk.
Its performance is relatively best when the factor weights are not close to one
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(λ̄ = 0.6 and 0.8): in this case, the James-Stein and ridge regression forecasts
shrink towards weights of 1/m, but this weighting is not optimal for small̄λ and
this evidently is a disadvantage for these estimators. This emphasizes the point
that the risk of the James-Stein, ridge regression and equal-weighting estimators
depend sensitively on the true parameter values because they favor a particular
weighting vector.

A noteworthy feature of these results is that, for largem, the risks of the
best combination forecasts approach the risk of the infeasible optimal linear
combination forecast based on the theoretical weight vectorβ0.

When the factor loadings vary over time (σζ > 0), the performance of all
the forecasts deteriorates, relative to the unobserved conditional mean. In these
trials, the PC forecast tends to have the lowest MSFE. This is somewhat sur-
prising, because the factor structure that the PC forecast exploits is no longer
present. However, it was shown theoretically in Stock and Watson (1998b) that
principal components continues to provide consistent (asm → ∞ andT → ∞)
estimates of the factor even with time-varying factor loadings for small or mod-
erate time variation, and these Monte Carlo results provide some confirmation
of this theoretical prediction.

The results forT = 200 are consistent with the results forT = 100. For
m = 2, the estimation methods have similar risks. Asm increases to 10, the
PC forecast has relatively better performance. For largem, however, the equal-
weighted forecast slightly outperforms the PC forecast, except in the case that
λ̄ = 0.8. For allm, the relative risk of the PC forecast is close to the bound given
by the infeasible optimal linear combination forecast.

In summary, four conclusions emerge from these Monte Carlo results. First,
the relative risks of the PC, James-Stein, RR, equal-weighting and median fore-
cast all decrease as the number of forecasts increase, whereas the relative risk
of the OLS forecast has a U-shape inm. The reason for the decreasing risk in
m for the equal-weighted average, the median, and the PC forecast is that the
variability in the idiosyncratic term is averaged out by the estimator so that the
averaging produces an estimate ofµt that improves asm increases. It appears
that a similar phenomenon is occuring for the James-Stein and ridge regressions,
because they shrink towards equal weighting. For OLS the increase in precision
associated with the use of more series is eventually outweighed by the increase
in sampling error associated with estimating the combining weights.

Second, the equal-weighting estimator generally works well unlessm is small
or the optimal weights are far from 1/m.

Third, the PC forecast is most often the best forecast and is always close
to the best forecast. Although the PC estimator does not involve shrinkage, it
exploits the strong restriction of the single factor model. Presumably this is the
source of its good forecasting performance.

Fourth, the median works well form ≥ 10, and is the best of those considered
here when there are some large outliers in the forecasts. This provides support
for the common practice of reporting the median forecast produced by a panel
of forecasters.
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4 Application: Forecasts of U.S. macroeconomic time series

4.1 Forecast data set

We now turn to an empirical investigation of combination forecasts using a
dataset of simulated real-time univariate forecasts of 215 monthly macroeconomic
time series for the United States, constructed and initially analyzed in Stock and
Watson (1998a). The details of the construction of this panel are rather involved,
and only a summary is provided here. The details are given in Stock and Watson
(1998a).

Data. The series were chosen to be representative of the main groups of U.S.
macroeconomic and financial time series data of interest to macroeconomists.
For most series, the data span 1959:1–1996:12, although some series have later
start dates and thus shorter spans. The series are listed in the Appendix. The
only preliminary transformation used was taking logarithms of some of the data.
In general, series in rates (interest rates, unemployment rates) and series with
negative values were left in native units, and logarithms were taken otherwise.

Primitive models and forecasting procedures.For each time series, a total of 105
primitive models were estimated. These primitive models included simple models
(exponential smoothing and no change), linear models (autoregressions), and
nonlinear models (neural networks and logistic smooth transition autoregressive
[LSTAR] models).

From these 105 primitive models, forecasts were produced by 49 forecasting
methods. These methods are listed in Table 2. For some methods, the forecasts
were those produced by one of the 105 primitive models. For example, the fore-
casting method in Table 2 produces a forecast using an autoregression specified
in levels (or logarithms) of the data with a constant term and four lags. For
other methods, these forecasts consisted of model selection using an information
criterion, either the AIC or the BIC. Other forecasting methods incorporated unit
root pretests, with the unit root test based on the Elliott-Rothenberg-Stock (1996)
DF-GLS procedure.

Estimation methods and out-of-sample forecasts.The forecasts were computed
as simulated ex-ante forecasts, that is, they were computed in a way to simulate
real-time forecasting. Thus, for each series at each date for each horizon, each
model was estimated using data up to that date, say datet . The forecasting
procedure then made subsequent unit root and model selection decisions using
the forecasts and data through datet . This entire process was repeated at date
t + 1. For series with no seasonal adjustment and no revisions, the forecasts
thus constructed are out-of-sample. For series with seasonal adjustment or other
revisions, these would be out-of-sample were the final revisions known at datet ;
since the revisions are unknown, these deviate from true out of sample forecasts
in this sense.

Forecasts were made at three horizons: 1, 6 and 12 months. The multistep
forecasts were computed by linear or nonlinear least squares regression of the
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Table 2. Summary of 49 forecasting methods used to construct the forecast database

Code Description

A. Linear methods
AR(p,u,d) Autoregressive methods

p = number of lags = 4, A (AIC, 0≤ p ≤ 12), or B (BIC, 0≤ p ≤ 12)
u = method of handling possible unit root

= L (levels), D (differences), or P (unit root pretest:
DF-GLSµ if d=C, DF-GLSτ if d=T)

d = deterministic components included
= C (constant only) or T (constant and linear time trend)

EX1 Single exponential smoothing
EX2 Double exponential smoothing
EXP DF-GLSµ pretest between EX1 and EX2

B. Nonlinear methods
NN(p,u,n1,n2) Artificial neural net methods

p = number of lags = 3, A (AIC, p=1,3), or B (BIC, p=1,3)
(same number number of lags in each hidden unit)

u = L (levels), D (differences), or P (DF-GLSµ unit root pretest)
n1 = number of hidden units in first hidden layer

= 2, A (AIC, 1 ≤ n1 ≤ 3), or B (BIC, 1≤ n1 ≤ 3)
n2 = number of hidden units in second hidden layer

= 0 (only one hidden layer), 1 or 2
LS(p,u,ξ) LSTAR methods

p = number of lags = 3, A (AIC, p=1,3,6), or B (BIC, p=1,3,6)
u = L (levels), D (differences), or P (DF-GLSµ unit root pretest)
ξ = switching variable

= L (ξt = yt ), D (ξt = ∆yt ), M (either L or D depending on unit root pretest), D6
(ξt = yt − yt−6), A (AIC over ξt = {yt , yt−2, yt−5, yt − yt−6, andyt − yt−12}
if levels specification, orξt = {∆yt , ∆yt−2, ∆yt−5, yt −yt−6, andyt −yt−12}
if differences specification), or B (BIC, same set as AIC).

C. No change
NOCHANGE yt+h|t = yt

Source:Stock and Watson (1998a).

h-step ahead value of the series on current and past vaues of the series. For
the linear models, estimation was by OLS. For the nonlinear models, estimation
was by nonlinear least squares using a combined random search and quadratic
hill-climbing method.

The dataset for the analysis of combination forecasts thus consists of a panel
of forecasts for each of these 215 series at horizonsh = 1, 6, 12. Each panel
has 49 forecasts (the 49 procedures in Table 2). For each series, the panel is
balanced, but the length of the panel differs from series to series depending on
data availability. For most series, the panel of forecasts commences in 1970:1,
although for series that start after 1959:1, the panel of forecasts commences 120
periods after the first period available for use in estimating the primitive models.
In all, this dataset consists of approximately 9 850 000 forecasts.
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Two variants of this data set were used. The first consists of the unadjusted
forecasts as just described. A feature of these forecasts is that there are rare, ex-
tremely large forecast errors, where the forecast errors can be five to ten standard
deviations larger than a typical change in the series. The second variant therefore
incorporates an additional adjustment to the forecasts by truncating the largest
outlier forecasts. The truncation rule was that if a forecasted change exceeded
the largest change in the series (at the relevant horizon) in the full historical
data set, then the forecasted change was truncated to equal the largest historical
change. This mechanical procedure can be viewed as incorporating, in real time,
the effect of human intervention when one of the 49 forecasting methods goes
badly awry.

Table 3. Summary of combination forecast methods used in the empirical analysis

Mnemonic Description

Equal and MSE-weighted averages
C(0,REC,Group) Simple average over Group
C(1,TW,Group) Inverse MSFE weighted average over Group

TW = number of observations in rolling window to compute MSFEs
= REC (recursive – all past forecasts used), 120, 60

Ridge regression
R(k,Group) Ridge regression, with ridge regression parameter k, by Group.

Principal components (factor model)
F(r,Group) PC regression forecast, r factors, by Group

Median and trimmed means
Med(Group) Median combination forecasts by Group
TM(α,Group) Trimmed mean, trimming parameterα (in percent) by Group

Predictive least squares
PLS(TW,Group) Predictive least squares combination forecasts

TW = REC, 120, 60

Notes:Group = A (linear), B (nonlinear), or A-C (all).

4.2 Combination forecasting methods

Five sets of combination forecasts were considered: weighted averages; ridge
regression; principal components regression; median and trimmed mean; and
predictive least squares (PLS). These combination forecasts are summarized in
Table 3. The OLS and James-Stein methods were infeasible for this data set
because for some series in some subperiods, one or more of the 49 methods
produced identical forecasts (e.g. the AIC and BIC model selection methods
selected the same primitive model and thus produced the same forecast). Thus
the second moment matrix of the forecasts was singular for some series in some
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subperiods and these methods, which involve inverses of this matrix, could not
be computed without further modifications. A ridge regresssion estimator with
very small k was however included to approximate the performance of OLS
weighting.3

Equal weighting and inverseMSE-weighted averages.These methods compute
weighted averages of{yt+h|t,i }, i = 1, . . . , 49, respectively by their simple average
or by weighting by inverse MSE as suggested by Bates and Granger (1969).
For the inverse-MSE weighted average, the weight on thei -th forecast isβi =
MSE−1

i ,t /
∑m

j =1(MSE−1
j ,t ), where MSEi ,t is the mean squared forecast error over

the historical period over which forecasts have been computed, (t − h − T1 +
1)−1∑t−h

s=T1
(ys+h − ys+h|s,i )2, whereT1 is the first date at which simulated out-of-

sample forecasts are computed for the 49 methods.

Ridge regression.The ridge regression combination forecasts are computed as
described in Sect. 2.3, withk = 0.001, 0.1, 0.5, 1. The ridge regression forecast
for k = 0.001 is a numerical approximation to the OLS forecast.

Principal components (factor model).Two principal components forecasts were
computed. The first was computed as described in Sect. 2.2. The factor ˆµt (h) was
estimated by computing the ordered eigenvectors of them × m moment matrix
of the h-step ahead forecasts. The second stage regression (3.7) was modified so
that an intercept was included in the regression ofyt+h on µ̂t , and this intercept
was added to the linear combination forecastβ̂PC,Yt+h|t . The second principal
component forecast was computed using two estimated factors. If the exact single
factor model applies to these data, this second factor is redundant and should
not help forecasting ability. The second factor was included in the event that the
single factor model provides a poor approximation to these forecasts.

Median and trimmed means.Because some of the forecast errors are very large
for some methods in some series at some dates, two robust averages were also
computed, the median and theα-trimmed mean of{yt+h|t,i }. The α-trimmed
mean is computed by dropping the smallest 100α% and largest 100α% of the
values of{yt+h|t,i } and computing a simple average of the remaining 100(1–2α)%
forecasts.

PLS. The predictive least squares model selection procedure was included as
another benchmark against which to judge the forecast combination methods. The
PLS criterion selects the single method which has produced the best forecasts
(lowest MSFE) to date, among the group at hand. The PLS is applied to histories
that include the entire prediction period, the previous 120 months only, and the
previous 60 months only, to yield three PLS forecasts.

Because some of these methods require initial observations on the 49 meth-
ods, the combination forecasts were computed starting in 1972:1 (or, for series
with start dates after 1959:1, 24 months after the first out-of-sample primitive
forecast was produced).

3 The results for the equal-weighted and inverse MSE-weighted averages, the median, and the
PLS forecasts were originally reported for this dataset in Stock and Watson (1998a).
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4.3 Results

The performance of the various forecasts is assessed by their mean squared
forecast error loss, averaged over all simulated out-of-sample time periods and
over all 215 series. This average loss of theh-step ahead forecast produced by
forecasting methodj is,

Lossj ,h =
1

215

∑
series{y}

1
T3 − T2 + 1

T3∑
t=T2

[
(yt+h − ŷt+h|t,j )/σ̂h

]2
(4.1)

whereT2 is the first out of sample period,T3 is the final forecast period, and ˆσh

is the sample standard deviation ofyt+h − yt . This average loss is the empirical
counterpart to the theoretical risk (2.2) and its Monte Carlo estimates tabulated
in the previous section. Because the units of the series generally differ, the risk
for each series is normalized by the variance of itsh-period change.

To facilitate comparisons of this loss, it is useful to report the loss relative
to a benchmark forecast. The benchmark forecast used here is the forecast from
an AR(4) in levels with a constant term. The performance of the combination
forecasts is assessed for three different sets of forecasting methods: all 49 meth-
ods, the 21 linear methods (group A in Table 2), and the 27 nonlinear methods
(group B in Table 2).

Table 4. Performance of combination forecasts, U.S. macroeconomic forecast dataset (Groups A-C
(all 49 forecasts per series per month), with outlier adjustment)

h = 1 h = 6 h = 12
Rank Method Rel.Loss Method Rel.Loss Method Rel.Loss

1 C(1,60,A-C) 0.9452 C(0,REC,A-C) 0.8741 C(0,REC,A-C) 0.7749
2 C(1,120,A-C) 0.9456 C(1,120,A-C) 0.8763 TM(5,A-C) 0.7819
3 C(0,REC,A-C) 0.9458 TM(5,A-C) 0.8775 C(1,120,A-C) 0.7844
4 C(1,REC,A-C) 0.9458 C(1,REC,A-C) 0.8777 TM(10,A-C) 0.7861
5 TM(5,A-C) 0.9476 C(1,60,A-C) 0.8778 C(1,REC,A-C) 0.7873
6 TM(10,A-C) 0.9496 TM(10,A-C) 0.8796 C(1,60,A-C) 0.7914
7 TM(20,A-C) 0.9533 TM(20,A-C) 0.8847 TM(20,A-C) 0.7944
8 TM(30,A-C) 0.9558 TM(30,A-C) 0.8883 TM(30,A-C) 0.7993
9 Med(A-C) 0.9589 Med(A-C) 0.8943 Med(A-C) 0.8070

10 R(1,A-C) 0.9659 R(1,A-C) 0.9339 R(1,A-C) 0.8677
11 F(1,A-C) 0.9748 R(0.5,A-C) 0.9653 R(0.5,A-C) 0.9050
12 F(2,A-C) 0.9770 F(1,A-C) 0.9781 PLS(REC,A-C) 0.9874
13 R(0.5,A-C) 0.9822 F(2,A-C) 1.0068 PLS(120,A-C) 1.0034
14 PLS(60,A-C) 1.0048 PLS(REC,A-C) 1.0164 F(1,A-C) 1.0138
15 PLS(120,A-C) 1.0060 PLS(120,A-C) 1.0258 R(0.1,A-C) 1.0376
16 PLS(REC,A-C) 1.0095 PLS(60,A-C) 1.0630 PLS(60,A-C) 1.0445
17 R(0.1,A-C) 1.0556 R(0.1,A-C) 1.0938 F(2,A-C) 1.0475
18 R(0.001,A-C) 1.8050 R(0.001,A-C) 2.0246 R(0.001,A-C) 1.8645

Notes:“Rel. Loss” is the mean squared error loss relative to AR(4) with a constant in levels, horizon
h = 1, 6, and 12.

The performance of the combination forecasts are summarized in Tables 4 (all
49 methods), 5 (group A), and 6 (group B) for the adjusted forecasts, in which the
largest forecasts are truncated to simulate forecaster involvement. For comparison
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Table 5. Performance of individual and combination forecasts, U.S. macroeconomic forecast dataset
(Group A (21 linear forecasts per series per month), with outlier adjustment)

h = 1 h = 6 h = 12
Rank Method Rel.Loss Method Rel.Loss Method Rel.Loss

1 C(0,REC,A) 0.9776 C(0,REC,A) 0.9052 C(0,REC,A) 0.8131
2 C(1,60,A) 0.9788 C(1,120,A) 0.9129 C(1,120,A) 0.8278
3 C(1,120,A) 0.9789 C(1,60,A) 0.9137 TM(10,A) 0.8288
4 C(1,REC,A) 0.9792 C(1,REC,A) 0.9139 TM(5,A) 0.8293
5 TM(5,A) 0.9808 TM(5,A) 0.9141 C(1,REC,A) 0.8299
6 TM(10,A) 0.9816 TM(10,A) 0.9142 TM(20,A) 0.8301
7 R(1,A) 0.9820 TM(20,A) 0.9163 TM(30,A) 0.8324
8 TM(20,A) 0.9832 TM(30,A) 0.9182 C(1,60,A) 0.8329
9 TM(30,A) 0.9841 Med(A) 0.9242 Med(A) 0.8424

10 R(0.5,A) 0.9853 R(1,A) 0.9321 R(1,A) 0.8592
11 Med(A) 0.9880 AR(B,P,C) 0.9452 AR(A,P,C) 0.8615
12 AR(4,P,C) 0.9961 R(0.5,A) 0.9466 AR(A,D,C) 0.8636
13 AR(4,P,T) 0.9977 AR(B,P,T) 0.9498 AR(A,P,T) 0.8667
14 AR(4,D,C) 0.9982 AR(B,D,C) 0.9502 AR(B,P,C) 0.8679
15 AR(4,L,C) 1.0000 AR(A,P,C) 0.9531 AR(B,D,C) 0.8725
16 PLS(120,A) 1.0019 AR(A,D,C) 0.9551 AR(B,P,T) 0.8748
17 PLS(REC,A) 1.0020 AR(A,P,T) 0.9565 R(0.5,A) 0.8797
18 AR(B,P,C) 1.0021 AR(4,P,C) 0.9641 AR(4,P,C) 0.8909
19 R(0.1,A) 1.0027 AR(4,D,C) 0.9694 AR(4,D,C) 0.8960
20 AR(B,P,T) 1.0041 AR(4,P,T) 0.9701 AR(4,P,T) 0.8987
21 AR(B,D,C) 1.0048 AR(B,L,C) 0.9842 AR(A,L,C) 0.9352
22 AR(B,L,C) 1.0059 PLS(REC,A) 0.9904 R(0.1,A) 0.9487
23 PLS(60,A) 1.0075 AR(A,L,C) 0.9928 AR(B,L,C) 0.9502
24 F(1,A) 1.0098 PLS(120,A) 0.9998 PLS(120,A) 0.9610
25 AR(4,D,T) 1.0116 AR(4,L,C) 1.0000 PLS(REC,A) 0.9642
26 AR(A,P,C) 1.0148 F(1,A) 1.0047 AR(4,L,C) 1.0000
27 AR(A,D,C) 1.0163 R(0.1,A) 1.0101 PLS(60,A) 1.0051
28 AR(4,L,T) 1.0164 PLS(60,A) 1.0384 AR(A,D,T) 1.0363
29 AR(A,P,T) 1.0170 AR(B,D,T) 1.0402 F(1,A) 1.0478
30 AR(A,L,C) 1.0171 AR(4,D,T) 1.0452 EXP 1.0610
31 AR(B,D,T) 1.0191 AR(A,D,T) 1.0508 AR(B,D,T) 1.0630
32 AR(B,L,T) 1.0248 F(2,A) 1.0514 AR(4,D,T) 1.0673
33 AR(A,D,T) 1.0291 AR(4,L,T) 1.0939 EX2 1.0792
34 AR(A,L,T) 1.0351 AR(B,L,T) 1.1008 F(2,A) 1.1099
35 EXP 1.0505 EXP 1.1058 AR(B,L,T) 1.2035
36 F(2,A) 1.0527 AR(A,L,T) 1.1100 AR(A,L,T) 1.2094
37 EX2 1.0528 EX2 1.1177 AR(4,L,T) 1.2299
38 R(0.001,A) 1.1118 R(0.001,A) 1.4774 R(0.001,A) 1.3450
39 EX1 1.5218 EX1 1.9416 EX1 1.8426

Notes:See the notes to Table 4.

purposes, the 21 original (noncombined) linear forecasting methods are included
along with the combination forecasts in Table 5, and the 27 nonlinear methods
are included in Table 6. The performance of these forecasts for the unadjusted
data set, which has some large outlier forecasts, particularly among the nonlinear
models, are reported in Tables 7, 8 and 9. Because of the outliers, some relative
losses are very large, so these final three tables only report results for procedures
with relative losses less than 2.0.
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Table 6. Performance of individual and combination forecasts, U.S. macroeconomic forecast dataset
(Group B (27 nonlinear forecasts per series per month), with outlier adjustment)

h = 1 h = 6 h = 12
Rank Method Rel.Loss Method Rel.Loss Method Rel.Loss

1 C(1,60,B) 0.9376 C(1,120,B) 0.8757 C(1,120,B) 0.7809
2 C(1,120,B) 0.9378 C(1,REC,B) 0.8771 C(1,REC,B) 0.7838
3 C(1,REC,B) 0.9379 C(1,60,B) 0.8771 C(0,REC,B) 0.7845
4 C(0,REC,B) 0.9393 TM(5,B) 0.8793 TM(5,B) 0.7850
5 TM(5,B) 0.9394 TM(10,B) 0.8794 TM(10,B) 0.7859
6 TM(10,B) 0.9397 C(0,REC,B) 0.8800 C(1,60,B) 0.7879
7 TM(20,B) 0.9430 TM(20,B) 0.8845 TM(20,B) 0.7935
8 TM(30,B) 0.9458 TM(30,B) 0.8917 TM(30,B) 0.8056
9 Med(B) 0.9508 Med(B) 0.9011 Med(B) 0.8200

10 R(1,B) 0.9617 R(1,B) 0.9254 R(1,B) 0.8553
11 F(1,B) 0.9698 R(0.5,B) 0.9484 R(0.5,B) 0.8860
12 F(2,B) 0.9745 NN(3,P,2,0) 0.9733 NN(3,P,2,0) 0.9059
13 R(0.5,B) 0.9758 NN(3,P,2,1) 0.9762 LS(3,P,D6) 0.9071
14 NN(3,L,2,1) 0.9866 NN(3,P,2,2) 0.9769 NN(3,D,2,0) 0.9108
15 NN(3,P,2,0) 0.9883 F(1,B) 0.9778 NN(3,P,2,2) 0.9110
16 NN(3,D,2,0) 0.9915 NN(3,D,2,0) 0.9785 NN(3,P,2,1) 0.9116
17 NN(3,P,2,1) 0.9919 NN(3,D,2,1) 0.9806 L(3,D,D6) 0.9118
18 NN(3,L,2,2) 0.9921 NN(3,D,2,2) 0.9817 NN(A,P,A,0) 0.9140
19 NN(3,D,2,1) 0.9945 LS(3,P,D6) 0.9838 NN(3,D,2,1) 0.9159
20 PLS(120,B) 1.0077 NN(A,P,A,0) 0.9845 NN(3,D,2,2) 0.9163
21 PLS(60,B) 1.0102 LS(3,D,D6) 0.9877 NN(B,P,B,0) 0.9176
22 NN(3,P,2,2) 1.0113 NN(A,D,A,0) 0.9890 NN(A,D,A,0) 0.9198
23 PLS(REC,B) 1.0118 F(2,B) 0.9893 NN(B,D,B,0) 0.9214
24 NN(3,D,2,2) 1.0168 NN(B,P,B,0) 0.9919 LS(B,P,B) 0.9224
25 NN(A,P,A,0) 1.0170 NN(B,D,B,0) 0.9966 LS(B,D,B) 0.9238
26 NN(B,P,B,0) 1.0197 LS(B,P,B) 1.0108 LS(A,P,A) 0.9275
27 NN(A,L,A,0) 1.0200 LS(B,D,B) 1.0118 LS(A,D,A) 0.9298
28 NN(A,D,A,0) 1.0223 LS(3,P,P) 1.0197 LS(3,P,P) 0.9468
29 NN(B,D,B,0) 1.0229 LS(3,D,D) 1.0249 LS(3,D,D) 0.9521
30 LS(3,P,D6) 1.0251 PLS(REC,B) 1.0250 PLS(REC,B) 0.9661
31 NN(3,L,2,0) 1.0261 PLS(120,B) 1.0313 PLS(120,B) 0.9724
32 NN(B,L,B,0) 1.0267 LS(A,D,A) 1.0435 F(1,B) 0.9986
33 LS(3,D,D6) 1.0275 LS(A,P,A) 1.0436 R(0.1,B) 1.0061
34 LS(3,L,D6) 1.0378 R(0.1,B) 1.0455 NN(3,L,2,1) 1.0178
35 R(0.1,B) 1.0380 NN(3,L,2,1) 1.0605 F(2,B) 1.0255
36 LS(3,P,P) 1.0483 NN(3,L,2,2) 1.0664 PLS(60,B) 1.0267
37 LS(3,D,D) 1.0515 PLS(60,B) 1.0669 LS(3,L,D6) 1.0651
38 LS(B,P,B) 1.0571 LS(3,L,D6) 1.0693 NN(3,L,2,2) 1.1257
39 LS(3,L,L) 1.0616 LS(3,L,L) 1.2237 NN(3,L,2,0) 1.2911
40 LS(B,D,B) 1.0618 NN(3,L,2,0) 1.2408 LS(3,L,L) 1.2958
41 LS(B,L,B) 1.0978 NN(A,L,A,0) 1.2778 NN(B,L,B,0) 1.3737
42 LS(A,P,A) 1.0989 NN(B,L,B,0) 1.2828 LS(B,L,B) 1.3922
43 LS(A,D,A) 1.1040 LS(B,L,B) 1.3808 NN(A,L,A,0) 1.3962
44 LS(A,L,A) 1.1190 LS(A,L,A) 1.3921 LS(A,L,A) 1.4146
45 R(0.001,B) 1.5122 R(0.001,B) 1.6456 R(0.001,B) 1.6261

Notes:See the notes to Table 4.
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Four conclusions are apparent. First, in all cases considered, combining fore-
casts improves on the performance of any individual method. For example, for
the adjusted forecasts at horizonh = 12, among all 49 methods, the method
with the lowest loss is AR(A,P,C), which has a relative mean squared error of
0.8615 (Table 5), while the best combination forecast is the simple average of
the 49 forecasts, which has a relative loss of 0.7749, an improvement of 9%.
In fact, at this horizon for the adjusted forecasts, trimmed means, medians, sim-
ple averages, inverse MSE-weighted averages, and ridge regression forecasts all
outperform the best individual method. This is of course consistent with other
results in the forecast combination literature.

Second, in the unadjusted datasets that include nonlinear forecasts, which con-
tain some very large outliers, the only combination methods to perform well are
the robust procedures, the median and the trimmed means. Overall, the trimmed
means provide a good alternative to the highly robust median, which is inefficient
unless the tails are very heavy, and the simple average. The simple average com-
bination and ridge regression combinations deterioriate very sharply in the full
unadjusted dataset. However, strikingly the trimmed mean forecasts deteriorate
only slightly. For example, the 20% trimmed mean has a relative loss of 0.9533
at h = 1 in the adjusted data set (all 49 methods), and this becomes 0.9532 in
the unadjusted dataset; ath = 6, these relative losses are 0.8847 and 0.8922; and
at h = 12, they are 0.7944 and 0.8326. Even though the combination methods
incorporate some extremely poor forecasts in the unadjusted dataset, the trimmed
means substantially outperform the best individual method in every case.

Third, the ridge regression estimator that approximates OLS (withk = 0.001)
performs very poorly in all cases. This is consistent with the theoretical and
Monte Carlo results which suggest that OLS is a poor choice for combining
many forecasts.

Fourth, the biggest discrepency between the empirical results and the Monte
Carlo analysis arises in the performance of the ridge regression and, especially,
the principal component forecasts. In the Monte Carlo analysis, the principal
component forecasts were most often the best, but in the empirical analysis, they
are among the worst of the combination methods in most cases, with relative
losses in the unadjusted case hovering near 1.0 (although it should be noted that
the principal component forecasts far outperform the ridge regression forecast
that approximates OLS). Adding an additional factor to the principal compo-
nent forecasts tends to increase their relative loss. Similarly, the ridge regression
forecasts, which worked very well in the simulation exercise, typically perform
worse than the simple average, median, and trimmed mean forecasts.

5 Discussion and conclusions

A common motivation for forecast combination is that the individual forecasts are
based on different information sets and reflect expert judgments; thus combining
the forecasts effectively broadens the information set used by any one forecaster,
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Table 7. Performance of combination forecasts, U.S. macroeconomic forecast dataset (Groups A-C
(all 49 forecasts per series per month), no outlier adjustment)

h = 1 h = 6 h = 12
Rank Method Rel.Loss Method Rel.Loss Method Rel.Loss

1 TM(20,A-C) 0.9532 TM(10,A-C) 0.8877 TM(10,A-C) 0.8261
2 TM(30,A-C) 0.9558 TM(20,A-C) 0.8922 TM(20,A-C) 0.8326
3 Med(A-C) 0.9587 TM(30,A-C) 0.8955 TM(30,A-C) 0.8369
4 TM(10,A-C) 0.9869 Med(A-C) 0.9000 Med(A-C) 0.8438
5 PLS(REC,A-C) 1.2505 TM(5,A-C) 1.3532 PLS(REC,A-C) 1.0363
6 TM(5,A-C) 1.5509 F(1,A-C) 1.4146 PLS(120,A-C) 1.0635
7 F(1,A-C) 1.7984 . . TM(5,A-C) 1.4621

Notes:Only methods with relative loss< 2 are reported. See the notes to Table 4.

and moreover combines the expert judgments of the individuals on the panel.
Neither of these features are present in the dataset analyzed here: all the forecasts
are univariate, and thus have the same information set (up to differences in lags),
and the forecasts were all generated by computer so that there is no expert opinion
involved. It is therefore all the more striking that in this dataset combination
forecasts improved on individual forecasts, in some cases by a considerable
margin. In this dataset, the deviations of forecasts from conditional expectations
arise solely from specification error and estimation error.

Consistent with the theoretical and Monte Carlo results, the simple average
forecasts and the robust forecasts (in particular the trimmed means) worked espe-
cially well in this dataset. A concrete recommendation which emerges from this
empirical analysis is that the trimmed mean with 10% or 20% trimming produces
robust yet efficient combination forecasts. Also, consistent with the theoretical
results, the OLS combination forecast (as approximated by the ridge regression
forecast with the least shrinkage) has very poor performance empirically.

Still, there are some discrepencies between the theoretical predictions and
the actual performance of some of the forecasting methods. In particular, the
ridge regression with the most shrinkage and principal component forecasts per-
formed well in the Monte Carlo simulation, but not in the empirical analysis.
This finding is similar to Guerard and Clemen’s (1989) finding that simple aver-
aging of forecasts outperformed latent root regression combination forecasts in
a panel of real-time forecasts of U.S. GDP. One can speculate why this might
be. For example, the quality of a particular forecast might change episodically,
which would have the effect of inducing time-varying factor loadings. In this case
the time-invariant single factor model would be inapplicable and the principal
component forecasts might perform less well. However, the principal compo-
nents forecast performed well in the Monte Carlo trials with time varying factor
loadings, so time variation alone seems an unlikely explanation of the empirical
findings. Alternatively, the idiosyncratic error covariance matrixΣe might have
large correlations, so that the risk function is not well approximated by the trace
of the variance-covariance matrix of the estimated weights. If so, the theoretical
argument for James-Stein estimation, ridge regression, and principal component
forecasts would be less compelling.
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Table 8. Performance of individual and combination forecasts, U.S. macroeconomic forecast dataset
(Group A (21 linear forecasts per series per month), no outlier adjustment)

h = 1 h = 6 h = 12
Rank Method Rel.Loss Method Rel.Loss Method Rel.Loss

1 C(0,REC,A) 0.9779 C(0,REC,A) 0.9134 C(0,REC,A) 0.8489
2 C(1,60,A) 0.9791 C(1,120,A) 0.9216 TM(10,A) 0.8645
3 C(1,120,A) 0.9792 C(1,REC,A) 0.9224 TM(20,A) 0.8656
4 C(1,REC,A) 0.9794 TM(10,A) 0.9224 C(1,120,A) 0.8658
5 TM(5,A) 0.9811 TM(5,A) 0.9225 TM(5,A) 0.8662
6 TM(10,A) 0.9819 C(1,60,A) 0.9226 TM(30,A) 0.8668
7 R(1,A) 0.9820 TM(20,A) 0.9241 C(1,REC,A) 0.8676
8 TM(20,A) 0.9836 TM(30,A) 0.9252 C(1,60,A) 0.8723
9 TM(30,A) 0.9845 Med(A) 0.9306 Med(A) 0.8765

10 R(0.5,A) 0.9853 R(1,A) 0.9368 R(1,A) 0.8820
11 Med(A) 0.9884 AR(B,P,C) 0.9506 AR(A,P,C) 0.8958
12 AR(4,P,C) 0.9961 R(0.5,A) 0.9515 AR(A,D,C) 0.8980
13 AR(4,P,T) 0.9977 AR(B,P,T) 0.9547 AR(A,P,T) 0.9012
14 AR(4,D,C) 0.9982 AR(B,D,C) 0.9556 AR(B,P,C) 0.9029
15 AR(4,L,C) 1.0000 AR(A,P,C) 0.9588 R(0.5,A) 0.9031
16 PLS(120,A) 1.0020 AR(A,D,C) 0.9608 AR(B,D,C) 0.9078
17 PLS(REC,A) 1.0020 AR(A,P,T) 0.9624 AR(B,P,T) 0.9102
18 R(0.1,A) 1.0027 AR(4,P,C) 0.9702 AR(4,P,C) 0.9258
19 AR(B,P,C) 1.0027 AR(4,D,C) 0.9755 AR(4,D,C) 0.9311
20 AR(B,P,T) 1.0047 AR(4,P,T) 0.9758 AR(4,P,T) 0.9341
21 AR(B,D,C) 1.0054 AR(B,L,C) 0.9904 AR(A,L,C) 0.9487
22 AR(B,L,C) 1.0065 PLS(REC,A) 0.9917 AR(B,L,C) 0.9669
23 PLS(60,A) 1.0077 AR(A,L,C) 0.9966 PLS(REC,A) 0.9912
24 F(1,A) 1.0098 AR(4,L,C) 1.0000 AR(4,L,C) 1.0000
25 AR(4,D,T) 1.0116 PLS(120,A) 1.0034 PLS(120,A) 1.0024
26 AR(A,P,C) 1.0151 F(1,A) 1.0081 PLS(60,A) 1.0535
27 AR(4,L,T) 1.0164 R(0.1,A) 1.0181 AR(A,D,T) 1.0775
28 AR(A,D,C) 1.0166 PLS(60,A) 1.0468 AR(B,D,T) 1.0851
29 AR(A,P,T) 1.0173 AR(B,D,T) 1.0501 F(1,A) 1.0893
30 AR(A,L,C) 1.0177 AR(4,D,T) 1.0545 AR(4,D,T) 1.0945
31 AR(B,D,T) 1.0197 AR(A,D,T) 1.0600 EXP 1.1711
32 AR(B,L,T) 1.0253 F(2,A) 1.0984 EX2 1.1903
33 AR(A,D,T) 1.0295 AR(4,L,T) 1.1036 F(2,A) 1.2490
34 AR(A,L,T) 1.0358 EXP 1.1152 AR(B,L,T) 1.2548
35 EXP 1.0506 AR(B,L,T) 1.1153 AR(A,L,T) 1.2617
36 F(2,A) 1.0527 AR(A,L,T) 1.1245 AR(4,L,T) 1.2868
37 EX2 1.0528 EX2 1.1272 EX1 1.9407
38 R(0.001,A) 1.1121 R(0.001,A) 1.5592 . .
39 EX1 1.5218 EX1 1.9596 . .

Notes:Only methods with relative loss< 2 are reported. See the notes to Table 4.

Although further work on these issues remains, these results provide a frame-
work for understanding the often-good performance of simple average forecasts
and median forecasts in empirical studies of combination forecasts. The instances
of disparities between the theory and the empirical results suggest challenges for
future research.
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Table 9. Performance of individual and combination forecasts, U.S. macroeconomic forecast dataset
(Group B (27 nonlinear forecasts per series per month), no outlier adjustment)

h = 1 h = 6 h = 12
Rank Method Rel.Loss Method Rel.Loss Method Rel.Loss

1 TM(30,B) 0.9459 TM(20,B) 0.8935 TM(20,B) 0.8369
2 Med(B) 0.9509 TM(30,B) 0.8995 TM(30,B) 0.8477
3 TM(20,B) 0.9966 Med(B) 0.9087 Med(B) 0.8620
4 NN(3,D,2,1) 1.0485 NN(3,P,2,1) 0.9867 NN(3,P,2,1) 0.9551
5 NN(3,P,2,1) 1.0734 NN(3,D,2,1) 0.9938 NN(3,D,2,1) 0.9596
6 NN(3,P,2,2) 1.2297 NN(3,L,2,1) 1.1884 LS(3,L,L) 1.9261
7 NN(3,D,2,2) 1.2322 F(1,B) 1.6681 . .
8 . . LS(3,L,D6) 1.6882 . .

Notes:Only methods with relative loss< 2 are reported. See the notes to Table 4.

Appendix: Data description

The time series used in this analysis are listed below. The data were obtained from
the DRI BASIC Economics Database (creation date 9/97). The format for each
series is its DRI BASIC mnemonic; a brief description; and the first date used
(in brackets). A series that was preliminarily transformed by taking its logarithm
is denoted by “log” in parentheses; otherwise, the series was used without pre-
liminary transformation. Abbreviations: sa=seasonally adjusted; saar=seasonally
adjusted at an annual rate ; nsa=not seasonally adjusted.
IP industrial production: total index (1992=100,sa) [1959:1] (log)

IPP industrial production: products, total (1992=100,sa) [1959:1] (log)

IPF industrial production: final products (1992=100,sa) [1959:1] (log)

IPC industrial production: consumer goods (1992=100,sa) [1959:1] (log)

IPCD industrial production: durable consumer goods (1992=100,sa) [1959:1] (log)

IPCN industrial production: nondurable condsumer goods (1992=100,sa) [1959:1] (log)

IPE industrial production: business equipment (1992=100,sa) [1959:1] (log)

IPI industrial production: intermediate products (1992=100,sa) [1959:1] (log)

IPM industrial production: materials (1992=100,sa) [1959:1] (log)

IPMD industrial production: durable goods materials (1992=100,sa) [1959:1] (log)

IPMND industrial production: nondurable goods materials (1992=100,sa) [1959:1] (log)

IPMFG industrial production: manufacturing (1992=100,sa) [1959:1] (log)

IPD industrial production: durable manufacturing (1992=100,sa) [1959:1] (log)

IPN industrial production: nondurable manufacturing (1992=100,sa) [1959:1] (log)

IPMIN industrial production: mining (1992=100,sa) [1959:1] (log)

IPUT industrial production: utilities (1992-=100,sa) [1959:1] (log)

IPX capacity util rate: total industry (% of capacity,sa)(frb) [1967:1]

IPXMCA capacity util rate: manufacturing,total(% of capacity,sa)(frb) [1959:1]

IPXDCA capacity util rate: durable mfg (% of capacity,sa)(frb) [1967:1]

IPXNCA capacity util rate: nondurable mfg (% of capacity,sa)(frb) [1967:1]

IPXMIN capacity util rate: mining (% of capacity,sa)(frb) [1967:1]

IPXUT capacity util rate: utilities (% of capacity,sa)(frb) [1967:1]

LHEL index of help-wanted advertising in newspapers (1967=100;sa) [1959:1]
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LHELX employment: ratio; help-wanted ads:no. unemployed clf [1959:1]

LHEM civilian labor force: employed, total (thous.,sa) [1959:1] (log)

LHNAG civilian labor force: employed, nonagric.industries (thous.,sa) [1959:1] (log)

LHUR unemployment rate: all workers, 16 years & over (%,sa) [1959:1]

LHU680 unemploy.by duration: average(mean)duration in weeks (sa) [1959:1]

LHU5 unemploy.by duration: persons unempl.less than 5 wks (thous.,sa) [1959:1] (log)

LHU14 unemploy.by duration: persons unempl.5 to 14 wks (thous.,sa) [1959:1] (log)

LHU15 unemploy.by duration: persons unempl.15 wks + (thous.,sa) [1959:1] (log)

LHU26 unemploy.by duration: persons unempl.15 to 26 wks (thous.,sa) [1959:1] (log)

LHU27 unemploy.by duration: persons unempl.27 wks + (thous,sa) [1959:1] (log)

LHCH average hours of work per week (household data)(sa) [1959:1]

LPNAG employees on nonag. payrolls: total (thous.,sa) [1959:1] (log)

LP employees on nonag payrolls: total, private (thous,sa) [1959:1] (log)

LPGD employees on nonag. payrolls: goods-producing (thous.,sa) [1959:1] (log)

LPMI employees on nonag. payrolls: mining (thous.,sa) [1959:1] (log)

LPCC employees on nonag. payrolls: contract construction (thous.,sa) [1959:1] (log)

LPEM employees on nonag. payrolls: manufacturing (thous.,sa) [1959:1] (log)

LPED employees on nonag. payrolls: durable goods (thous.,sa) [1959:1] (log)

LPEN employees on nonag. payrolls: nondurable goods (thous.,sa) [1959:1] (log)

LPSP employees on nonag. payrolls: service-producing (thous.,sa) [1959:1] (log)

LPTU employees on nonag. payrolls: trans. & public utilities (thous.,sa) [1959:1] (log)

LPT employees on nonag. payrolls: wholesale & retail trade (thous.,sa) [1959:1] (log)

LPFR employees on nonag. payrolls: finance,insur.&real estate (thous.,sa [1959:1] (log)

LPS employees on nonag. payrolls: services (thous.,sa) [1959:1] (log)

LPGOV employees on nonag. payrolls: government (thous.,sa) [1959:1] (log)

LW avg. weekly hrs. of prod. wkrs.: total private (sa) [1964:1]

LPHRM avg. weekly hrs. of production wkrs.: manufacturing (sa) [1959:1]

LPMOSA avg. [1959:1]

LEH avg hr earnings of prod wkrs: total private nonagric ($,sa) [1964:1] (log)

LEHCC avg hr earnings of constr wkrs: construction ($,sa) [1959:1] (log)

LEHM avg hr earnings of prod wkrs: manufacturing ($,sa) [1959:1] (log)

LEHTU avg hr earnings of nonsupv wkrs: trans & public util($,sa) [1964:1] (log)

LEHTT avg hr earnings of prod wkrs:wholesale & retail trade(sa) [1964:1] (log)

LEHFR avg hr earnings of nonsupv wkrs: finance,insur,real est($,sa) [1964:1] (log)

LEHS avg hr earnings of nonsupv wkrs: services ($,sa) [1964:1] (log)

HSFR housing starts:nonfarm(1947-58);total farm&nonfarm(1959-)(thous.,sa [1959:1] (log)

HSNE housing starts:northeast (thous.u.)s.a. [1959:1] (log)

HSMW housing starts:midwest(thous.u.)s.a. [1959:1] (log)

HSSOU housing starts:south (thous.u.)s.a. [1959:1] (log)

HSWST housing starts:west (thous.u.)s.a. [1959:1] (log)

HSBR housing authorized: total new priv housing units (thous.,saar) [1959:1] (log)

HSBNE houses authorized by build. permits:northeast(thou.u.)s.a [1960:1] (log)

HSBMW houses authorized by build. permits:midwest(thou.u.)s.a. [1960:1] (log)

HSBSOU houses authorized by build. permits:south(thou.u.)s.a. [1960:1] (log)

HSBWST houses authorized by build. permits:west(thou.u.)s.a. [1960:1] (log)
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HNS new 1-family houses sold during month (thous,saar) [1963:1] (log)

HNSNE one-family houses sold:northeast(thou.u.,s.a.) [1973:1] (log)

HNSMW one-family houses sold:midwest(thou.u.,s.a.) [1973:1] (log)

HNSSOU one-family houses sold:south(thou.u.,s.a.) [1973:1] (log)

HNSWST one-family houses sold:west(thou.u.,s.a.) [1973:1] (log)

HNR new 1-family houses, month’s supply @ current sales rate(ratio) [1963:1]

HMOB mobile homes: manufacturers’ shipments (thous.of units,saar) [1959:1] (log)

CONTC construct.put in place:total priv & public 1987$(mil$,saar) [1964:1] (log)

CONPC construct.put in place:total private 1987$(mil$,saar) [1964:1] (log)

CONQC construct.put in place:public construction 87$(mil$,saar) [1964:1] (log)

CONDO9 construct.contracts: comm’l & indus.bldgs(mil.sq.ft.floor sp.;sa) [1959:1] (log)

MSMTQ manufacturing & trade: total (mil of chained 1992 dollars)(sa) [1959:1] (log)

MSMQ manufacturing & trade:manufacturing;total(mil of chained 1992 dollars)(sa) [1959 (log):1]

MSDQ manufacturing & trade:mfg; durable goods (mil of chained 1992 dollars)(sa) [1959 (log):1]

MSNQ manufact. & trade:mfg;nondurable goods (mil of chained 1992 dollars)(sa) [1959:1 (log)]

WTQ merchant wholesalers: total (mil of chained 1992 dollars)(sa) [1959:1] (log)

WTDQ merchant wholesalers:durable goods total (mil of chained 1992 dollars)(sa) [1959 (log):1]

WTNQ merchant wholesalers:nondurable goods (mil of chained 1992 dollars)(sa) [1959:1] (log)

RTQ retail trade: total (mil of chained 1992 dollars)(sa) [1959:1] (log)

RTDQ retail trade:durable goods total (mil.87$)(s.a.) [1959:1] (log)

RTNQ retail trade:nondurable goods (mil of 1992 dollars)(sa) [1959:1] (log)

IVMTQ manufacturing & trade inventories:total (mil of chained 1992)(sa) [1959:1] (log)

IVMFGQ inventories, business, mfg (mil of chained 1992 dollars, sa) [1959:1] (log)

IVMFDQ inventories, business durables (mil of chained 1992 dollars, sa) [1959:1] (log)

IVMFNQ inventories, business, nondurables (mil of chained 1992 dollars, sa) [1959:1] (log)

IVWRQ manufacturing & trade inv:merchant wholesalers (mil of chained 1992 dollars)(s (log)[1959:1]

IVRRQ manufacturing & trade inv:retail trade (mil of chained 1992 dollars)(sa) [1959: (log)1]

IVSRQ ratio for mfg & trade: inventory/sales (chained 1992 dollars, sa) [1959:1]

IVSRMQ ratio for mfg & trade:mfg;inventory/sales (87$)(s.a.) [1959:1]

IVSRWQ ratio for mfg & trade:wholesaler;inventory/sales(87$)(s.a.) [1959:1]

IVSRRQ ratio for mfg & trade:retail trade;inventory/sales(87$)(s.a.) [1959:1]

PMI purchasing managers’ index (sa) [1959:1]

PMP napm production index (percent) [1959:1]

PMNO napm new orders index (percent) [1959:1]

PMDEL napm vendor deliveries index (percent) [1959:1]

PMNV napm inventories index (percent) [1959:1]

PMEMP napm employment index (percent) [1959:1]

PMCP napm commodity prices index (percent) [1959:1]

MOCMQ new orders (net) - consumer goods & materials, 1992 dollars (bci) [1959:1] (log)

MDOQ new orders, durable goods industries, 1992 dollars (bci) [1959:1] (log)

MSONDQ new orders, nondefense capital goods, in 1992 dollars (bci) [1959:1] (log)

MO mfg new orders: all manufacturing industries, total (mil$,sa) [1959:1] (log)

MOWU mfg new orders: mfg industries with unfilled orders(mil$,sa) [1959:1] (log)

MDO mfg new orders: durable goods industries, total (mil$,sa) [1959:1] (log)

MDUWU mfg new orders:durable goods indust with unfilled orders(mil$,sa) [1959:1] (log)
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MNO mfg new orders: nondurable goods industries, total (mil$,sa) [1959:1] (log)

MNOU mfg new orders: nondurable gds ind.with unfilled orders(mil$,sa) [1959:1] (log)

MU mfg unfilled orders: all manufacturing industries, total (mil$,sa) [1959:1] (log)

MDU mfg unfilled orders: durable goods industries, total (mil$,sa) [1959:1] (log)

MNU mfg unfilled orders: nondurable goods industries, total (mil$,sa) [1959:1] (log)

MPCON contracts & orders for plant & equipment (bil$,sa) [1959:1] (log)

MPCONQ contracts & orders for plant & equipment in 1992 dollars (bci) [1959:1] (log)

FM1 money stock: m1(curr,trav.cks,dem dep,other ck’able dep)(bil$,sa) [1959:1] (log)

FM2 money stock:m2(m1+o’nite rps,euro$,g/p&b/d mmmfs&sav&sm time dep(bil$, [1959:1] (log)

FM3 money stock: m3(m2+lg time dep,term rp’s&inst only mmmfs)(bil$,sa) [1959:1] (log)

FML money stock:l(m3 + other liquid assets) (bil$,sa) [1959:1] (log)

FM2DQ money supply - m2 in 1992 dollars (bci) [1959:1] (log)

FMFBA monetary base, adj for reserve requirement changes(mil$,sa) [1959:1] (log)

FMBASE monetary base, adj for reserve req chgs(frb of st.louis)(bil$,sa) [1959:1] (log)

FMRRA depository inst reserves:total,adj for reserve req chgs(mil$,sa) [1959:1] (log)

FMRNBA depository inst reserves:nonborrowed,adj res req chgs(mil$,sa) [1959:1] (log)

FMRNBC depository inst reserves:nonborrow+ext cr,adj res req cgs(mil$,sa) [1959:1] (log)

FMFBA monetary base, adj for reserve requirement changes(mil$,sa) [1959:1] (log)

FCLS loans & sec @ all coml banks: total (bils,sa) [1973:1] (log)

FCSGV loans & sec @ all coml banks: U.S.govt securities (bil$,sa) [1973:1] (log)

FCLRE loans & sec @ all coml banks: real estate loans (bil$,sa) [1973:1] (log)

FCLIN loans & sec @ all coml banks: loans to individuals (bil$,sa) [1973:1] (log)

FCLNBF loans & sec @ all coml banks: loans to nonbank fin inst(bil$,sa) [1973:1] (log)

FCLNQ commercial & industrial loans oustanding in 1992 dollars (bci) [1959:1] (log)

FCLBMC wkly rp lg com’l banks:net change com’l & indus loans(bil$,saar) [1959:1]

CCI30M consumer instal.loans: delinquency rate,30 days & over, (%,sa) [1959:1]

CCINT net change in consumer instal cr: total (mil$,sa) [1975:1]

CCINV net change in consumer instal cr: automobile (mil$,sa) [1975:1]

FSNCOM nyse common stock price index: composite (12/31/65=50) [1959:1] (log)

FSNIN nyse common stock price index: industrial (12/31/65=50) [1966:1] (log)

FSNTR nyse common stock price index: transportation (12/31/65=50) [1966:1] (log)

FSNUT nyse common stock price index: utility (12/31/65=50) [1966:1] (log)

FSNFI nyse common stock price index: finance (12/31/65=50) [1966:1] (log)

FSPCOM s&p’s common stock price index: composite (1941-43=10) [1959:1] (log)

FSPIN s&p’s common stock price index: industrials (1941-43=10) [1959:1] (log)

FSPCAP s&p’s common stock price index: capital goods (1941-43=10) [1959:1] (log)

FSPTR s&p’s common stock price index: transportation (1970=10) [1970:1] (log)

FSPUT s&p’s common stock price index: utilities (1941-43=10) [1959:1] (log)

FSPFI s&p’s common stock price index: financial (1970=10) [1970:1] (log)

FSDXP s&p’s composite common stock: dividend yield (% per annum) [1959:1] (log)

FSPXE s&p’s composite common stock: price-earnings ratio (%,nsa) [1959:1] (log)

FSNVV3 nyse mkt composition:reptd share vol by size,5000+ shrs,% [1959:1] (log)

FYFF interest rate: federal funds (effective) (% per annum,nsa) [1959:1]

FYCP interest rate: commercial paper, 6-month (% per annum,nsa) [1959:1]

FYGM3 interest rate: U.S.treasury bills,sec mkt,3-mo.(% per ann,nsa) [1959:1]
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FYGM6 interest rate: U.S.treasury bills,sec mkt,6-mo.(% per ann,nsa) [1959:1]

FYGT1 interest rate: U.S.treasury const maturities,1-yr.(% per ann,nsa) [1959:1]

FYGT5 interest rate: U.S.treasury const maturities,5-yr.(% per ann,nsa) [1959:1]

FYGT10 interest rate: U.S.treasury const maturities,10-yr.(% per ann,nsa) [1959:1]

FYAAAC bond yield: moody’s aaa corporate (% per annum) [1959:1]

FYBAAC bond yield: moody’s baa corporate (% per annum) [1959:1]

FWAFIT weighted avg foreign interest rate(%,sa) [1959:1]

FYFHA secondary market yields on fha mortgages (% per annum) [1959:1]

EXRUS united states;effective exchange rate(merm)(index no.) [1973:1] (log)

EXRGER foreign exchange rate: germany (deutsche mark per U.S.$) [1973:1] (log)

EXRSW foreign exchange rate: switzerland (swiss franc per U.S.$) [1973:1] (log)

EXRJAN foreign exchange rate: japan (yen per U.S.$) [1973:1] (log)

EXRUK foreign exchange rate: united kingdom (cents per pound) [1973:1] (log)

EXRCAN foreign exchange rate: canada (canadian $ per U.S.$) [1973:1] (log)

HHSNTN u. of mich. index of consumer expectations(bcd-83) [1959:1]

F6EDM U.S.mdse exports: [1964:1] (log)

FTMC6 U.S.mdse imports: crude materials & fuels (mil$,nsa) [1964:1] (log)

FTMM6 U.S.mdse imports: manufactured goods (mil$,nsa) [1964:1] (log)

PWFSA producer price index: finished goods (82=100,sa) [1959:1] (log)

PWFCSA producer price index:finished consumer goods (82=100,sa) [1959:1] (log)

PWIMSA producer price index:intermed mat.supplies & components(82=100,sa) [1959:1] (log)

PWCMSA producer price index:crude materials (82=100,sa) [1959:1] (log)

PWFXSA producer price index: finished goods,excl. foods (82=100,sa) [1967:1] (log)

PW160A producer price index: crude materials less energy (82=100,sa) [1974:1] (log)

PW150A producer price index: crude nonfood mat less energy (82=100,sa) [1974:1] (log)

PW561 producer price index: crude petroleum (82=100,nsa) [1959:1] (log)

PWCM producer price index: construction materials (82=100,nsa) [1959:1] (log)

PWXFA producer price index: all commodities ex.farm prod (82=100,nsa) [1959:1] (log)

PSM99Q index of sensitive materials prices (1990=100)(bci-99a) [1959:1] (log)

PUNEW cpi-u: all items (82-84=100,sa) [1959:1] (log)

PU81 cpi-u: food & beverages (82-84=100,sa) [1967:1] (log)

PUH cpi-u: housing (82-84=100,sa) [1967:1] (log)

PU83 cpi-u: apparel & upkeep (82-84=100,sa) [1959:1] (log)

PU84 cpi-u: transportation (82-84=100,sa) [1959:1] (log)

PU85 cpi-u: medical care (82-84=100,sa) [1959:1] (log)

PUC cpi-u: commodities (82-84=100,sa) [1959:1] (log)

PUCD cpi-u: durables (82-84=100,sa) [1959:1] (log)

PUS cpi-u: services (82-84=100,sa) [1959:1] (log)

PUXF cpi-u: all items less food (82-84=100,sa) [1959:1] (log)

PUXHS cpi-u: all items less shelter (82-84=100,sa) [1959:1] (log)

PUXM cpi-u: all items less midical care (82-84=100,sa) [1959:1] (log)

PSCCOM spot market price index:bls & crb: all commodities(67=100,nsa) [1959:1] (log)

PSCFOO spot market price index:bls & crb: foodstuffs (67=100,nsa) [1959:1] (log)

PSCMAT spot market price index:bls & crb: raw industrials(67=100,nsa) [1959:1] (log)

PZFR prices received by farmers: all farm products (1977=100,nsa) [1975:1] (log)
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PCGOLD commodities price:gold,london noon fix,avg of daily rate,$ per oz [1975:1] (log)

GMDC pce,impl pr defl:pce (1987=100) [1959:1] (log)

GMDCD pce,impl pr defl:pce; durables (1987=100) [1959:1] (log)

GMDCN pce,impl pr defl:pce; nondurables (1987=100) [1959:1] (log)

GMDCS pce,impl pr defl:pce; services (1987=100) [1959:1] (log)

GMPYQ personal income (chained) (series #52) (bil 92$,saar) [1959:1] (log)

GMYXPQ personal income less transfer payments (chained) (#51) (bil 92$,saar) [1959:1] (log)

GMCQ personal consumption expend (chained) - total (bil 92$,saar) [1959:1] (log)

GMCDQ personal consumption expend (chained) - total durables (bil 92$,saar) [1959:1] (log)

GMCNQ personal consumption expend (chained) - nondurables (bil 92$,saar) [1959:1] (log)

GMCSQ personal consumption expend (chained) - services (bil 92$,saar) [1959:1] (log)

GMCANQ personal cons expend (chained) - new cars (bil 92$,saar) (log)
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