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Key issues in forecast combination

@ Why combine?

e Many models or forecasts with ‘similar’ predictive accuracy

o Difficult to identify a single best forecast
o State-dependent performance

o Diversification gains
@ When to combine?

e Individual forecasts are misspecified
o Unstable forecasting environment (past track record unreliable)
e Short track record; use 1-over-N weights?

@ What to combine?

o Forecasts using different information sets
o Forecasts based on different modeling approaches (linear/nonlinear)
e Surveys, econometric model forecasts
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Essentials of forecast combination

o Dimensionality reduction: Combination reduces the information in a vector
of forecasts to a single summary measure using a set of combination weights
@ Optimal combination chooses weights to minimize the expected loss of the
combined forecast
e More accurate forecasts tend to get larger weights
o Combination weights also reflect correlations across forecasts
e Estimation error is important to combination weights
o lrrelevance Proposition: In a world with no model misspecification, infinite
data samples (no estimation error) and complete access to the information
sets underlying the individual forecasts, there is no need for forecast
combination.
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When to combine?

Combined forecast f(ffl f‘z) dominates individual forecasts 7 and #, if

E[L(Fyrin)] > r}r}")‘ E[L(f(h, %) yrin)], fori=1,2

L : loss function, e.g., MSE loss (y — f)?
YT+h : outcome h periods ahead

h : forecast horizon

Forecast combination is essentially a model selection and parameter
estimation problem with special constraints on the estimation problem
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Applications of forecast combinations

@ Forecast combinations have been successfully applied in several areas of
forecasting:

Gross National Product

currency market volatility and exchange rates
inflation, interest rates, money supply

stock returns

meteorological data

city populations

outcomes of football games

wilderness area use

check volume

political risks

@ Estimation of GDP

@ Averaging across values of unknown parameters
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Two types of forecast combinations

@ Data underlying the forecasts are not observed:

o Treat individual forecasts like any other conditioning information (data) and
estimate the best possible mapping from the forecasts to the outcome

@ Data underlying the model forecasts is observed: ‘model combination’

@ Using a middle step of first constructing forecasts limits the flexibility of the
final forecasting model. Why not directly map the underlying data to the
forecasts?

e Estimation error plays a key role in the risk of any given method. Model
combination yields a risk function which, through parsimonious use of the
data, could result in an attractive risk function

o Combined forecast can be viewed simply as a different estimator of the final
model
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Combinations of forecasts: theory

o Restrict conditioning information to a set of m forecasts
ze = {Feinjer o Tmeshie

@ The optimal combination is the function of the forecasts
f(?ltJrh\tr ?2t+h\tr ?mt+h|t) that solves

rp(ir)‘E {E(f(ﬁwh\p Potshler s ?mt+h\t)vyt+h)\zt]

@ Optimality of the combined forecast is conditional on observing the forecasts
{feshit: Toesh|er - fmegn|e f rather than the underlying information sets used
to construct the forecasts

o If the model f(.) is a linear index, the combination is a linear combination
with weights w1y, ..., wm
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Combinations of forecasts: theory

@ Specialized concepts in optimal forecast combination arise from additional
restrictions placed on the search for combination models

@ Because the underlying ‘data’ are forecasts, they can be expected to obtain
non-negative weights that sum to unity,
0<w; <1, i=1 m

@ Such constraints can be used to reduce the relevant parameter space for the
combination weights and offer a more attractive risk function

@ No need to constrain z; to include only the set of observed forecasts
{fitshler o fmesnje f- This information could be augmented to include other
observed variables, z; :

T(i’)] E {‘C(f(?lt+h\tv ?2t+h\t' ?mtJrh\tht)v}/t-‘rh)}
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Combinations of two forecasts

@ Two individual forecasts fi, f» with forecast errors ey =y —fi, eo =y —

@ Both forecasts assumed to be unbiased: E|e;] =0
2
" ’

@ Combined forecasts will also be unbiased if the weights add up to one:

@ Variances of forecast errors: o<, i = 1,2. Covariance is 012

f=wh+(1-w)h

@ Combined forecast error is a weighted average of the individual forecast

e(w) = y—wh—(1—w)h =we; + (1 —w)ey
Ele(w)] = 0
Var(e(w)) = w?0? + (1 —w)?03 +2w(1l — w)ois

Timmermann (UCSD) Combinations July 29 - August 2, 2013



Combinations of two forecasts: optimal weights

@ Solving for the MSE-optimal combination weights,

2
* 05 — 012
wo = 55
o] +05—2013
2
1—-w* = 01012

U% +U% — 2012

o Combination weight can be negative if 015 > 0’% or rip > (T%

@ Negative weight on a forecast does not mean that it has no value - it means
the forecast can be used to offset the prediction errors of other models

@ Weakly correlated forecast errors: weights are the relative variance (7%/(7% of

the forecasts: ) 0
s I YA
W =55 = S,

oi+o5 1405/0%

o Greater weight is assigned to more precise models (small (712)
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Combinations of multiple unbiased forecasts

@ e =1,y — f : vector of forecast errors;

@ Minimizing MSE:
w* = argminw'Tew,
w

sit.wip=1

@ Optimal combination weights:

Wt = (Z ) I ey,
MSE(w*) = wSew* = (yZotim) !
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Optimality of equal weights

e Equal weights (EW) play a special role in forecast combination
@ EW are optimal in population when the individual forecast errors have
identical variance, ¢, and identical pair-wise correlations p
Im
02(14 (m—1)p)
a?(1+(m—1)p)
m

@ This situation holds to a close approximation when all models are based on
similar data and perform roughly the same

@ More generally, EW are the optimal combination weights when the unit
vector lies in the eigen space of X¢.

e Both a sufficient and a necessary condition for equal weights to be optimal
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Estimating combination weights

@ In practice, combination weights need to be estimated using past data

e Once we use estimated parameters, the population-optimal weights no longer
have any optimality properties in a ‘risk’ sense
e For any forecast combination problem, there is typically no single optimal
forecast method with estimated parameters
o Risk functions for different estimation methods will typically depend on the
data generating process
o we prefer one method for some processes and different methods for other data
generating processes
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Estimating combination weights

@ Treating the forecasts as data means that all issues related to how to
estimate forecast models from data are relevant

@ In the case of forecast combination, the “data” is not the outcome of a
random draw but can be regarded as unbiased (if not precise) forecasts of the
outcome

@ This suggests imposing special restrictions on the combination schemes

e Under MSE loss, linear combination schemes might impose

Zw,-:l, w; € [0,1}
i

@ Simple combination schemes such as EW satisfy these constraints and do not
require estimation of any parameters

o EW can be viewed as a reasonable prior when no data has been observed
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Estimating combination weights

Existence of many estimation methods boils down to a number of standard issues
in constructing forecasts:

role of estimation error

lack of a single optimal estimation scheme

simple methods are difficult to beat in practice

common baseline is to use a simple EW average of forecasts:
t+h|t 2 i, t+h|t

@ no estimation error here since the combination weights are imposed rather
than estimated
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Simple combination methods

o Equal-weighted forecast
t+h|t Z f; t+h|t

@ Median forecast

median __
th‘t = median{f; t+h\t}/ 1

@ Trimmed mean. Order forecasts {f1’t+h‘t < Btpne <
< fo1,t4ht < fmehje - Trim top/bottom A%

L Laym)

trim  __ .
ft-&-h\t (1 — 2/\) L/\Zm:Hj f:,t+h\t
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Bates-Granger restricted least squares

@ Bates and Granger (1969): use plug-in weights in the optimal solution based
on the estimated variance-covariance matrix

@ This is numerically identical to restricted least squares estimator of the
weights from a regression of the outcome on the vector of forecasts f; , ;
and no intercept subject to the restriction that the coefficients sum to one:

fBG

— L B A |
t+hlt = YorsTerhlt = (e ) e feypge

° 3. = (T - h)’1 ZtT:*lh et+h\te;+h\t : sample estimator of error covariance
matrix
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Diebold and Pauly (1987) shrinkage estimator

@ Forecast combination weights formed as a weighted average of the prior
wp = tm/ m and the least squares estimates W, s :

@p = Abors +m (I = A)m

Empirical Bayes approach sets A = /(1 — 62 /%?)

&2 : MLE for variance of the residuals from the OLS combination regression
%2 = (djo/s - wp)/(d}ols - wp)/tr[(Z;Zf)}il

Zr : matrix of regressors (ignoring the constant)

Z;Z,c is an unscaled estimate of the variance-covariance matrix of the
forecasts
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Weights inversely proportional to MSE or rankings

@ Ignore correlations across forecast errors and set weights proportional to the
inverse of the models’ MSE-values:

MSE;
wj = m -1
i=1 MSE;

@ Aiolfi and Timmermann (2006) propose a robust weighting scheme that
weights forecast models inversely to their rank, Rank; ,p;

-1
Ra”kit+h\t

m -1
Liz1 Rank/t+h\t

Wit4h|t =

@ Best model gets a rank of 1, second best model a rank of 2, etc.
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Forecast combination puzzle

@ Empirical studies often find that simple equal-weighted forecast combinations
perform very well compared with more sophisticated combination schemes
that rely on estimated combination weights

o Smith and Wallis (2009): “Why is it that, in comparisons of combinations of
point forecasts based on mean-squared forecast errors ..., a simple average
with equal weights, often outperforms more complicated weighting schemes.”

@ Errors introduced by estimation of the combination weights could overwhelm
any gains from setting the weights to their optimal values over using equal
weights

@ Explanations of the puzzle based on estimation error must show that

e estimation error is large  and/or
e gains from setting the combination weights to their optimal values are small
relative to using equal weights
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Forecast combination puzzle - is it estimation error?

o In sufficiently large samples OLS estimation error should be of the order
(m=1)/T
o Unless equal weights are close to being optimal, estimation error is unlikely to
be the full story, at least when m/ T is small

@ If poor forecasting methods get weeded out, most forecasts in any
combination have similar forecast error variances, leading to a nearly constant
diagonal of X,

o Differences across correlations would be required to cause deviations from EW

o Large unpredictable component outside all of the forecasts pushes correlations
towards positive numbers

@ Explanations that aim to solve the forecast combination puzzle by means of
large estimation errors require model misspecification or more complicated
DGPs than is assumed when estimating the combination weights
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Rapach-Strauss-Zhou (RFS, 20

Quarterly data, 1947-2005
15 variables from Goyal and Welch (2008)

Individual univariate prediction models:

rev1 = &+ Bixit + €1

Protjei = Qi Py ixie

@ Forecast combination:

N

AC _ o .

M1 = Y W, iTt41]t,i
i=1
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Combination weights (Rapach et al.)

N

?1.“C+1\t = Zwt,i?wl\t,i
i=1

wt‘,' — l/N
DMSPE, }

Wei = TN p—)
YL, DMSPE,;
t

DMSPE;; = Y 67 '5(rsi1 —Pey1,)?

S:TO

o DMSPE is the discounted mean squared prediction error, using a discount
factor, 6 <1
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Rapach-Strauss-Zhou (RFS, 2010): results

Table 1
Equity premium out-of-sample forecasting results for individual forecasts and coml

ng mothods

TIndivicual predictive regression medel forecasts Comhbination forecasts

Fredicior Ry (%) A (%) Prdictor  Rhg (%) A (%) Combining nethod  Rbg (%) 4 (%)
[ @ [E) @ &) ® ™ [ ©

P:mrl A 1965:1- ’0054 out-of-sample period
55 0

Dyp 0347 Mean 234
my 025+ 141 lI'R Median L
E/P 026 064 TMS Trimmed mean 21l
/E —142 058  DFY DMSPE, 241
SVAR -12.07 013 DFR DMSPE, 259
B/M —260  —058 INFL

NTIS —0o1 008 K Mean, CT 323 1.25
TBL =278 260

Panel B. 1976:1-2005:4 out-of-sample period

Dyp —070 L0V —3.50 —0.80  Mean Lio 0.57
Y —054 LTR bl Median 151 0.53
EsP 075 TMS Trimmed mean 123 0.59
D/E —L.65  DFY DMSPE, Lo L 0.54
SVAR 006 DFR DMSPE. & = 0.9 Lo 0.46
B/M -1.27 INFL

NTIS 060 ItK Mean, CT L20* 055
TBL —0.82

Pancl C. 2000:1-2005:4 out-of-sample pericd

Dyp 1022+ 1206 LTV Mean 304 231
oy l040m 1208 LT Median 156" 0.28
EsP a0 053 TMS Trimmed mean 2 QB“ 212
D/E 0.56 050  DFY DMSPE, 165
SVAR —362  -l6&4 DFR DMSPE, 2 66" 1.97
B/M 23 300 INFL

NTIS —4.00 133 1K Mean, CT 243 132
TRL =250 020

Ry is the Camphell and Thompson (2008} aut-of-sample £ statistic. Utilty gain () is the portfolio man-
agement fee (in annualized percentage retum) that an investor with mean-varianee prefercnces and risk aversion
coefhicicnt of three would be willing to pay to have access to the forecasting model given in Column (1), (41,
or (7) relative to the historical average benchmark forecasting model: the weight on stocks in the imvestor's
portoliois restricted to lie hetween zcro and 1.5 (inchusive). Statistical significance for the R statistic is bassd
on the p-value for the Clark and West (2007) out-of-sample MSPE-adjasted statistic: the statistic comesponds to
2 onc-sided test of the null hypothesis that the competing forecasting model given in Columa (1), (4). or (7) has
equal expected squan: prediction error mlative o he historical average benchmark forecasting mede! against the
alternative hypethesis that the competing forecasting model has a lower expected square prediction error than
the historical average benchmark forcasting model. *, . and *** indicate significance af the 10%, 5%, and 16
Ievels, respeetively
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I I I I
-0 1970 1980 1990 2000

Figure §

Elfl:]it_y premium forecasts for the mean combining method, historical average, and kitchen sink model,
1965:1-2005:4

The solid (dotted. dashed) line corresponds to the mean combining method (historical average, kitchen sink
model) forecast.
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Empirical Results (Rapach, Strauss and Zhou

Tnhll-S
2¢ statistics for out-of-sample equity premium combination forecasts during good, normal, and had
arowth periods, 1963:1-2005:4

Forecast horizon: one quarter Forecast horizon: four quarters
Combining method  Overall  Good ~ Normal ~ Bad  Owerall  Good  Normal  Bad
) @ 3 “) (5) () &) () )

Panel A. Sorting on real GDP growth

Mean 1.82 L7 617 B.19H 3.07 3.63* 11.58%*
Median 267 5.02°%F  6.99%* 12.74%%  6.35% 5.23%
Trimmed mean 225 504 813 5410 4010 1063
DMSPE, 8 = 1.0 171 626  TETH 232 35 11464+
DMSPE. 6 = 0.9 3495 1.60 6.33%%% 596 4.71* 0.27 B.2TH
Panel B. Sorting on real profit growth
Mean 3.58%* 287 —1.03 7.94%%% B9 0.93 4.89% 14,72
Median 256% 021 574 6007 114 B00* 1018
Trimmed mean 351 285 067 74T RI3T 174 583 1355
DMSPE, 6= 1.0 354 274 121 808 787 016 44l 1478+
DMSPE,6=0.0 349" 251  —156  840°° 596 —428 200  1470%
Panel C. Sorting on real net cash flow growth
Mean 3585447 20T 463" R107 3200 BRI 1142
Median O 4127 L0™ 425" 6997 499" 617" 048"
Trimmed mean 51 5017 236" 447 813 439 9.13** 10.04%*
DMSPE. 6 = 1.0 543 551 2,13+ 4528 TRTE 297+ B.504% 11.09+++
DMSPE. 6 = 0.9 349" 588 1.84* 415 5.96% 0.53 6.66% 9.56*

This table reports the Campbell and Thompson (2008) R} statistic. The Rp statistics are computed for the
entire 1965:1-2005:4 forecast evaluation period (Overall) and three subperiods corresponding to the top third
(Good), the middle third (Normal). and the bottom third (Bad) of observations sorted on the macroeconomic
variable given in the panel head Statistical significance for the Rf,s statistic is based on the p-value for
the Clark and West (2007) out-of-sample MSPE-adjusted stati ided test
of the null hypothesis that the combination forecast given in Column (1) has equal expected square prediction
error relative to the historical average benchmark forecast against the i is that the

forecast has a lower expected square prediction error than the historical average bcnchmark forecast. *, **, and
% indicate significance at the 10%, 5%, and 1% levels, respectively.
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ach, Strauss, Zhou: main results

o Forecast combination methods dominate individual prediction models for
stock returns out-of-sample

@ Forecast combination reduces forecast variance

o Combined return forecasts are closely related to the economic cycle (NBER
indicator)

@ "Our evidence suggests that the usefulness of forecast combining methods
ultimately stems from the highly uncertain, complex, and constantly evolving
data-generating process underlying expected equity returns, which are related
to a similar process in the real economy."
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Elliott, Gargano, and Timmermann (JoE, forthcoming):

@ Generalizes combination of m univariate models

1 & .
ft+1|t = — thﬁi
m:
i=1
to consider all ny i k—variate models (out of a total of K possible predictors)

o For fixed K, the estimator for the complete subset regression, Bk K. can be

written as
Bik = NMikBors+op(1)
1 ek / - et
Aka = Z (SI-ZXS,') (SiZX)-
kK i=1

e S, : K x K matrix with zeros everywhere except for ones in the diagonal cells
corresponding to included variables, zeros for the excluded variables
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Elliott, Gargano, and Timmermann (JoE, forthcoming)

Figure 5: Out-of-sample forecasts of monthly stock returns for different k-variate subset combinations

0.15 T T T
—_— 2
Best k—variate |

S

—-0.05

Equity Premium
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-0.15

-02

—0.25 L L L
1965Q1 197602 1987Q4 1999Q2 2010Q4
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Elliott, Gargano, and Timmermann (JoE, forthcoming)

Figure 7: Out-of-sample forecast performance. Each ecirele represents a single regression model,
grouped aceording to the number of predictors the model contains. For a given value of k, the number
of possible k-variate models, (lf) = ﬁ is reported on the upper x-axis at the top of the diagram.
Triangles represent average values computed across all models with a given number of predictors, k.
The horizontal line marked *Average’ shows the performance averaged across all 4096 models while the
dotted horizontal line marked 'EW’ refers to the performance of the equal-weighted forecast combination
based on all models. The full curved line tracks the subset combination of the k-variate models. The
best and worst univariate models are displayed as text strings above & = 1; AIC and BIC refer to the
models recursively selected by these information criteria.
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Adaptive combination weights

o Bates and Granger (1969) propose several adaptive estimation schemes

@ Rolling window of the forecast models’ relative performance over the most
recent win observations:

-1
t 2
(Zr:t—winﬂ e,',ﬂph)

-1
m t 2
j=1 (ZT:th[nJrl ej,m,h)

Wi tlt—h =

o Adaptive updating scheme discounts older performance, A € (0;1) :

Zt . e2 -1
T=t—win+1 % t|t—h

m t 2 -1
j=1 (ZT:tfwinJrl ej,f\r_h)

d’i,t\t—h - )\d’i,t—ut—h—l + (1 - )\)

@ The closer to unity is A, the smoother the combination weights
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Time-varying combination weights

@ Time-varying parameter (Kalman filter):

I
Yerl = Wil +€qa
W1 + U, COV(Ut,St+1) =0

Wt

o Discrete (observed) state switching (Deutsch et al., 1994):

Vi1 = lecea(wor + @i Feiqpe) + (1= le,en) (o2 + @ik 1)) + €641

@ Regime switching weights (Elliott and Timmermann, 2005):

P
Yt+1 = WOst+1+WsH1ft+1\t+€t+1

Pf(5t+1 = 5t+1‘5t = St) = Ps;y 15t
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Combinations as a hedge against instability

@ Forecast combinations can work well empirically because they provide
insurance against model instability

o Empirically, Elliott and Timmermann (2005) allow for regime switching in
combinations of forecasts from surveys and time-series models and find strong
evidence that the relative performance of the underlying forecasts changes
over time

o Performance of combined forecasts tends to be more stable than that of
individual forecasts used in the empirical combination study of Stock and
Watson (2004)

o Combination methods that attempt to explicitly model time-variations in the
combination weights often fail to perform well, suggesting that regime
switching or model ‘breakdown’ can be difficult to predict or even to track
through time
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Model combination

@ When the data underlying the individual forecasts is observed, we can
construct forecasts from many different models and average over the
resulting forecasts

@ For linear combinations, the model average forecast is
t+h\t Zw, it+h|t

® fityp|¢ : individual forecast that depends on some underlying data, z;

@ Same issues as when only the forecasts are observed - but new possibilities
like BMA (Bayesian Model Averaging) arise

Timmermann (UCSD) Combinations July 29 - August 2, 2013 34 / 50



Classical approach to density combination

@ Problem: we do not directly observe the outcome density—we only observe a
draw from this—and so cannot directly choose the weights to minimize the
loss between this object and the combined density

o Kullback Leibler (KL) loss for a linear combination of densities Y_I" ; w;pj+(y)
relative to some unknown true density p(y) is given by

/p )In(p(y))dy — /P(y) In (é w;pf(y)> d

C—Eln (i WiPi(Y))

i=1

@ C is constant for all choices of the weights w;

@ Minimizing the KL distance is the same as maximizing the log score in
expectation
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Classical approach to density combination

@ Use of the log score to evaluate the density combination is popular in the
literature

o Geweke and Amisano (2011) use this approach to combine GARCH and
stochastic volatility models for predicting the density of daily stock returns

@ Under the log score criterion, estimation of the combination weights becomes
equivalent to maximizing the log likelihood. Given a sequence of observed
outcomes {yt}thl, the sample analog is to maximize

T m
@w = argmax 'Y In (Z WiPit(Yt))
t=1 \i=1
m
st.w; > 0, Y wj=1 foralli
i—1
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Prediction pools with two models (Geweke-Amisano, 2011)

o With two models, My, M>, we have a predictive density

p(ye|Yi—1. M) = wp(ye| Ye—1, M1) + (1 — w)p(yt| Ye—1, M2)

and a predictive log score

.
Z'Og [wp(ye|Ye—1, M1) + (L = w)p(ye|Ye-1, M2)], w € [0,1]

@ Empirical example: Combine GARCH and stochastic volatility models for
predicting the density of daily stock returns
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Log predictive score as a function of model weight,

S&P500, 1976-2005 (Geweke-Amisano, 2011)

Gaussian, HMNM GARCH, HMNM
" - -9300
£ -9500 =
g S 9350
w 12
e 2 _a400
£ -10000 2
3 H -9450
a o
& = 9500/
5 ]
-10500 9550+
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Weight on model HMNM Weight on model HMNM
EGARCH, HMNM SV, HMNM
-9300] -9300
4 .
S -9350 S -9350
o w
2 -9400 2 -9400
3] sl
g -9450] E -9450
a a
59500 o -9500
S i
-9550 -9550
0 0.2 04 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
Weight on model HMNM Weight on model HMNM
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Weights in pools of multiple models, S&P500, 1976-2005

(Geweke-Amisano, 2011)

Table 3

Optimal pools of 6 and 5 models.
Gaussian  GARCH  EGARCH  t-GARCH SV HMNM  log score
0.000 0.000 0.319 0.417 0.000 0.264 —9264.83
0.000 0.060 X 0.653 0.000 0.286 —9284.30
0.000 0.000 0.471 X 0.000 0.529 —9280.34
0.000 0.000 0.323 0.677 0000 X —9296.08

The first six columns provide the weights for the optimal pools and the last column
indicates the log score of the optimal pool. “X" indicates that a model was not included
in the pool.
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Bayesian Model Averaging (BMA)

P y) = fl wiply|M;)

@ m models: My, ..., M,
o BMA weights predictive densities by the posteriors of the models, M;

@ BMA is a model averaging procedure rather than a predictive density
combination procedure per se

@ BMA assumes the availability of both the data underlying each of the
densities, p;(y) = p(y|M;), and knowledge of how that data is employed to
obtain a predictive density

@ p(M;) : prior probability that model i is the true model
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Bayesian Model Averaging (BMA)

@ Posterior probability for model /, given the data, Z, is

p(Z|M;)p(M;)
i1 P(ZIM;)p(M;)

p(M;|Z) =

@ The combined model average is then

m

p(y) = gp(yIM;)p(MfIZ)

Marginal likelihood of model i is

P(ZIM;) = [ P(Z]6; M) P(6:|M;)d,

p(6;|M;) : prior density of model i's parameters

p(Z|0;, M;) : likelihood of the data given the parameters and the model
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Constructing BMA estimates

Requirements:

@ List of models My, ..., M,

o Computation of p(M;|Z) requires computation of the marginal likelihood
p(Z|M;) which can be time consuming

@ Prior model probabilities p(My), ..., p(Mp,)
@ Priors for the model parameters P(61|My), ..., P(0m| M)
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Alternative BMA schemes

e Raftery, Madigan and Hoeting (1997) MC3
o If the models’ marginal likelihoods are difficult to compute, one can use a
simple approximation based on BIC:

exp(—0.5BIC;)
Y.i", exp(—0.5BIC;)

wj = P(Mj|Z) =

@ Remove models that appear not to be very good

o Madigan and Raftery (1994) suggest removing models for which p(M;|Z) is
much smaller than the posterior probability of the best model
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Avramov (JFE, 2002)

e m = 14 different predictors

o 2% = models

@ monthly and quarterly stock returns, 1953-1998

@ six Fama-French portfolios: size (S,B)x(LMH) book to market
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Avramov (JFE, 2002): Results

Table 2

Pasterior probabilities of forecasting models based on a prior sample weighted against predictability
The first rows display cumulative posterior probabilities computed as .+, where .+ is a 2 x 14 matrix
representing all forecasting models by their unique combinations of zeros and ones and # is a 2'% x|
vector including posterior probubilities for all models. The second rows denote the highest-posterior-
probability compositions rep 1 by a combi of zeros and ones designating exclusions and
inclusions of predictive variables, respectively. The stock universe comprises six portfolios identified by
two letters desig creasing values of size (S,B) and book-to-market (LM H). Following are the
predictors spanning the information set: dividend vield (Div); book-to-market (BM); earnings vield (EY);
the momentum portfolio (WML); the difference in annualized yields of Moody’s Baa and Aaa rated bonds
(Del); the monthly rate of a three-month Treasury bill (Thill); excess return on the value-weighted index
(RET); the difference between the return on long-term corporate bonds and the return on long-term
government bond (DEF); the difference between the monthly return on long-term government bond and
the one-month Treasury bill rate (TERM); January Dummy (Jan); inflation rate (Inf); size premium
(SMB); value premium (HML); and the difference in annualized yield of ten-year and one-year Treasury
bills (Term). Figures displayed below are computed when investors encounter a hypothetical sample
welghted against predictability.

Portfolio Predictive variables

Div. BM EY WML Def Thill RET DEF TERM Jan Inf SMB HML Term

SL 0.20 008 038 002 014 028 048 004  0.02 021 031 016 005 008
0 0 1 0 0 o 0 o 0 o 1 0 0 o
SM 012 006 0.16 002 010 009 040 006 054 037 015 0,12 002 019
0 0 0 0 0 o 0 o 1 1 0 0 0 o
SH 0.06 0.05 0.07 003 006 0.04 049 003 035 100 0.06 008 002 022
0 0 0 0 0 o 1 o 0 1 0 0 0 o
BL 012 005 0.14 004 014 013 005 007 020 003 069 005 005 015

0 0 0 0 0 o 0 o 0 0 1 0 0 o

BM 015 006 015 003 020 034 003 009 054 007 023 004 003 025
0 0 0 0 0 o 0 o 1 0 0 0 0 o

BH 007 006 0.06 003 009 009 0.02 003 017 092 021 002 002 047
0 0 0 0 0 o 0 o 0 1 0 0 0
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Avramov (JFE, 2002): Results

Tuble 6
Bayesian model averaging: external validit
The table displays several statistics examining the properties of out-of-sample monthly forecast errors
generated by several return-generating processes and the weighted forecasting model. The former set
includes the all-inclusive model (All), the iid model (iid), and five models selected by adjusted R2, AIC,
SIC, FIC, and PIC, all of which are described by Bossaerts and Hillion (1999). We examine three prior
fing to a hypothetical sample size equal to 50, 100, and 25 observations per
parameter. MPE is the mean forecast error. Efficiency stands for the estimated slope in the regression of
forecast errors on predicted one-period-ahead returns. Serial correlation expresses the estimated slope in
the regression of currept on lagged forecast errors. The quantities r-statistic’s are the corresponding
testing the equality of the forecast errors, of the correlation between forecast errors and future

and of serial correlations to zero. MSE is the mean squared error in percent.
We adopt two different schemes having distinet asymptotic properties. The rolling scheme fixes the
estimation window size and drops distant observations as recent ones are added. The rsive scheme uses
all available data. The bottom part of the table displays mean squared errors for the quarterly sample
corresponding to three prior scen: n which the number of hypothetical observations is equal to one
third of the monthly counterparts, To= 17,33, and 8.

To=350To=100Ty=25 All iid  AdjR* AIC SIC FIC PIC

The rolling scheme—monthly sample
0.0006 0.0007  0.0003-0.0006 0.0007 ~0.0002 0.0000 00023 0.6001 —0.0003

-Statistic 0.4225 04944 0.2368 -0.3874  0.5126 —0.1551 0.0176 — 15588  0.0365-0.2117
Efficiency ~0.0563 ~0.0287 —0.2335-0.7874 —0.4371 —0.7642 -0.7919 —0.9454 —0.8709 -0.7926
-Statistic ~0.1788 —0.0863 —0.8557 - 7.8065 —1.3761 —7.4691 ~6.9512 -7.9715 - 74193 -7.2763
Serial correlation  0.0397  0.0499 0.0 —0.0284  0.0684 —0.0043 —0.0051  0.0274 —0.0185 —0.0269
-Statistic 0.6676 0.8326  0.5494 -0.4856 1.1288 —0.0738 —0.0895 0.5024 —0.3167 —0.4659

MSE 02137 02141 02139 02333 0.2155 02309 02298 02319 02339 02312

The recursive scheme—monthly sample
MPE —0.0003 —0.0004 —0.0003 0.0005 -0.0010 0.0007 00012 0.0013 0.0028 0.0020
t-Statistic ~0.1049 — ~0.1421 0.1847 0.3018 05103 0.5099 1.1455 08152
Efficiency ~0.2357 ~0.4018 —0.6708 —0.5959 —0.5804 —0.7953 ~0.7319 —0.7300

-Statis —0.6675 -0.2572 —1.3455 - 3.0407 —2.8158 -2.7292 -3.7994 -3.0175-2.9242
Serial correlation  0.0401  0.0489  0.0372 0.0036 0.0706 0.0144 00143 0.0417 0.0144 0.0120
r-Statistic 0.6728 08079 0.6320 0.0655 L1414 02597 02572 0.738 0.2663 0.2194
MSE 02133 0.2133 02143 0.2231 0.2155 0.2197 02189 0.2260 0.2237 0.223%

MSEs for the quarterly sample
Rolling 0.7546 07577 07651 0.9333 0.7777 0.9041 08629 0.8570 09286 0.9347
Recursive 0.7757 0.7678  0.7930 0.8312 0.7781 0.8163 0.8233 0.8952 08170 0.8337
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Avramov (JFE, 2002): Results

Table 7

Variance decompositions

The table exhibits the marginal contribution of each source of uncertainty about predicted stock returns,
1.e., model estimation risk, and uncertainty attributed to forecast errors (denoted For. error), to the
overall uncertainty about predicted returns. The variance components are given by

M
vart Reg[D} = S PCAGIDIEL Y + varias) + (- Eia00 - {410

=
where Ry_y 1s the next-period excess return, P{.4;|D) is the posterior probability of model j,E{ i} and
var{/;} are the forecast error and parameter uncertainty (,ompunenl\ u)rre\pmldmg to model j,
Lll;elv The model uncertainty component is given by Z g P //,.|D]fr - IE..',,][/ - IE.z,,] where
P{.#;|D)E{ 4} is the predicted mean of the next- pem)d excess return that incorporates model
. The decompositions are performed separalely for each of six equity portfolios formed as the
||1ler\etl|n|1 of two size (8,B) and three book-to-market (L.M.H) groups, and are presented for both
monthly and quarterly samples. For each sample, we examine three specifications of the prior sample size

Ty

Portfolio Monthly observations Quarterly phservarions
Estimation risk Model risk For. error  Estimation risk  Model risk  For. Error
Ty = 50 observations per parameler Ty = 17 observations per parameler

SL 0.02 0.05 0.93 0.06 0.09 085

SM 0.03 0.08 0.89 0.07 011 0.82

SH 0.04 0.02 0.94 0.06 0.10 0.84

BL 0.02 0.01 0.97 0.05 0.06 0.89

BM 0.02 0.02 0.96 0.06 0.10 0.84

BH 0.03 0.03 0.94 0.05 0.11 0.84
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Avramov (JFE, 2002): Results

Table &

Asset allocation and the economic loss of ignoring model uncertainty

The table exhibits asset allocations 1o six size book-to-market portfolios as percentages ol the total
invested wealth using three prior scenarios corresponding to a hypothetical prior sample size equal to 25,
50, and 100 observations per parameter. Assel allocations are derived {or investment horizons ol one, two,
four, six, eight, and ten vears, for relative risk-aversion coefficient (y) equal to seven, and for current values
of predictive variables (z¢) equal to actual-end-of-sample realizations. We also examine asset allocation
when the current values are equal to historical means focusing on 7y = 50. The table exhibits allocation to
individual portfolios, total allocation to equities (Total), and a utility loss. Utlity loss 1s computed as the
loss m an annual certainty equivalent risk-free rate perceived by investors who are forced Lo 1gnore model
uncertainty and, instead, allocate funds based upon several return-generating processes. The latter includes
the all-inclusive model {All), and models selected by adjusted K2, A1C, SIC, FIC, and PIC, all of which are
described by Bossaerts and Hillion (1999).

Horizon Asset allocation Utility loss

SL SM  SH BL BM BH Total All  AdjR® AIC SIC FIC PIC

1, = 50 observations per parameter, and z4 =end-of-sample realizations

1 000 000 036 000 000 031 067 437 1.3 L71 171 371 233
2 000 000 032 000 000 033 065 407 195 256 261 341 313
4 000 000 030 000 000 033 0.63 390 209 263 265 255 273
6 000 000 029 000 000 034 063 300 183 227 225 179 208
8 000 000 028 000 000 035 0.62 223156 L8 191 1.29 1.63
10 000 000 027 000 000 035 062 175 1.37 159 371 098 135
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Avramov (JFE, 2002): main results

@ BMA forecasts are more robust than individual forecasts, with unbiased and
serially uncorrelated forecast errors

@ Model uncertainty reduces the strength of the evidence on return
predictability

@ term and market risk premia appear to be the best predictors of stock returns
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Conclusion

@ Combinations of forecasts is motivated by

e misspecified forecasting models due to, e.g., structural breaks
o diversification across forecasts
e private information used to compute individual forecasts (surveys)

@ Simple, robust estimation schemes tend to work well
o small samples (estimation errors in combination weights)

@ Even if they do not always deliver the most precise forecasts, forecast
combinations, particularly equal-weighted ones, generally do not deliver poor
performance and so from a “risk” perspective represent a relatively safe
choice

@ Empirically, survey forecasts work well for many macroeconomic variables,
but they tend to be biased and not very precise for stock returns
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