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Abstract
This article presents a formal explanation of the forecast combination puzzle, that
simple combinations of point forecasts are repeatedly found to outperform sophisti-
cated weighted combinations in empirical applications. The explanation lies in the
effect of finite-sample error in estimating the combining weights. A small Monte
Carlo study and a reappraisal of an empirical study by Stock and Watson [Federal
Reserve Bank of Richmond Economic Quarterly (2003) Vol. 89/3, pp. 71–90] sup-
port this explanation. The Monte Carlo evidence, together with a large-sample
approximation to the variance of the combining weight, also supports the popular
recommendation to ignore forecast error covariances in estimating the weight.

I. Introduction
The idea that combining different forecasts of the same eventmight beworthwhile has
gainedwide acceptance since the seminal article of Bates andGranger (1969). Twenty
years later, Clemen (1989) provided a review and annotated bibliography containing
over 200 items, which he described as ‘an explosion in the number of articles on the
combination of forecasts’, mostly concerning point forecasts;Wallis (2005) considers
extensions to the combination of interval and density forecasts. Despite the explosion
of activity, Clemen found that a variety of issues remained to be addressed, the first
of which was ‘What is the explanation for the robustness of the simple average of

*The first version of this article, entitled ‘Combining point forecasts: the simple average rules, OK?’, was
presented in seminars at Nuffield College, Oxford, and Universidad Carlos III de Madrid in Spring 2005. The
helpful comments of seminar participants, anonymous referees, Mark Watson and Kenneth West, and access
to the database of James Stock and Mark Watson are gratefully acknowledged.
JEL Classification numbers: C22, C53, E37.
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forecasts?’ (1989, p. 566). That is, why is it that, in comparisons of combinations of
point forecasts based on mean-squared forecast errors (MSFEs), a simple average,
with equal weights, often outperforms more complicated weighting schemes. This
empirical finding continually reappears, for example, in several articles by Stock and
Watson (1999, 2003a, 2004), who call this result the ‘forecast combination puzzle’
in the most recent of these articles (2004, p. 428). The differences are not necessarily
large; for example, in the second article theMSFE improvement of the simple average
does not exceed 4% (2003a, Table 4), but they are always in the same direction. A
simple explanation of this puzzle is explored in this article.
The explanation rests in part on the observation that, in the more complicated

weighting schemes, the weights must be estimated. Bates and Granger (1969) con-
sidered the estimation properties of the weight in a simple two-forecast example
(albeit assuming, unrealistically, uncorrelated forecast errors), and found that the
distribution of the estimated weight is highly dispersed. This finding reappeared in
several theoretical and empirical extensions over the following two decades, as noted
in Clemen’s (1989) survey, and led some authors to speculate that the estimated com-
bining weights might be so unreliable or unstable that the theoretical advantage of the
combined forecast over an individual forecast is lost. No attention appears to have
been given to the impact on the comparison of different combined forecasts, however,
and Clemen’s (1989) first question quoted above remained unanswered.
More recently, the effect of parameter estimation error on forecast evaluation

procedures has been much studied, following the contribution of West (1996). This
analysis is extended to the forecast evaluation of competing nested models by Clark
and West (2006). In this article, we observe that the same framework is relevant to
the forecast combination puzzle, because more general weighting schemes nest the
simple average, and we show how it accommodates a resolution of the puzzle. It is
shown that, if the optimal combining weights are equal or close to equality, a simple
average of competing forecasts is expected to be more accurate, in terms of MSFE,
than a combination based on estimated weights.
The article proceeds as follows. Section II presents the general framework for

analysis, beginning with the case of two competing forecasts and then consider-
ing generalizations to combinations of many forecasts. Two empirical applications
follow: the first, in section III, is a small Monte Carlo study of combinations of two
forecasts; the second, in section IV, is a reappraisal of a study by Stock and Watson
(2003a) of combinations of many forecasts of US output growth. An appendix to
section III develops an asymptotic result that supports the empirical recommenda-
tion to ignore forecast error covariances in calculating combining weights. Section
V concludes. Forecast comparisons in the cited articles by Stock and Watson, as in
many other articles, are based on relatively informal comparisons of performance
measures such as MSFE, without formal hypothesis testing, and this article takes the
same approach. The article’smain contributions are presented in relatively simple set-
tings, to aid communication. For discussion of other aspects of forecast combination
in more general settings – asymmetric loss functions, non-stationarities, shrinkage
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estimators – see the recent survey by Timmermann (2006). Extensions to formal
inference procedures are a subject for further research.

II. Weighted and unweighted combinations of forecasts
2.1. Optimal weights

We follow Bates and Granger (1969) and consider the case of two competing point
forecasts, f1t and f2t , made h periods earlier, of the quantity yt . The forecast errors are

eit = yt − fit , i=1, 2.
It is usually assumed that the forecasts are unconditionally unbiased, or ‘unbiased on
average’ in Granger and Newbold’s (1986, p. 144) term, so that

E(eit)=0, i=1, 2.
We denote the forecast error variances as �2i , i=1, 2, and their covariance as �12. The
combined forecast is the weighted average

fCt = k f1t + (1− k) f2t , (1)

which is also unbiased in the same sense. Its error variance is minimized by setting
the weight k equal to

ko= �22−�12
�21+�22−2�12

, (2)

the ‘optimal’ value, noting a sign error in Bates and Granger’s equation (1). This
expression can also be recognized as the coefficient in a regression of e2t on (e2t−e1t),
which suggests a way of estimating ko from data on forecasts and outcomes.A further
interpretation is that this is equivalent to the extended realization-forecast regression

yt =�+�1f1t +�2f2t +ut (3)

subject to the restrictions �=0,�1+�2=1.Although weights outside the (0, 1) inter-
val might be thought to be hard to justify, all these interpretations admit this possi-
bility. An estimate based on equation (2) is negative whenever sample moments
satisfy s12>s22, and exceeds one if s12>s21.
The minimized error variance of the combined forecast is no greater than the

smaller of the two individual forecast error variances; hence, in general, there is a
gain from combining using the optimal weight. Equality occurs if the smaller vari-
ance is that of a forecast which is already the minimummean-squared error (MMSE)
forecast: there is then no gain in combining it with an inferior forecast. If the MMSE
forecast is f1t , say, with error variance �21, then it also holds that �12=�21 for any other
forecast f2t , whereupon ko=1. In this case, and if h=1, the error term in equation (3)
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is non-autocorrelated. In all other cases, the error term is expected to exhibit auto-
correlation; hence, k̂o or its regression equivalent is not in general fully efficient.
The simple average, with equal weights, is the case k=0.5. This is optimal if

�21=�22, i.e. the two competing forecasts are equally good (or bad), irrespective of any
covariance between their errors.A further possibility suggested by Bates and Granger
is to neglect any covariance term, or assume it to be zero, and use the expression

k ′ = �22
�21+�22

.

This again gives equal weights if the error variances are equal, but also restricts the
weights to the (0, 1) interval in general. However, if f1t is the MMSE forecast and
f2t is any other forecast, this does not deliver weights of 1 and 0 as in the previous
paragraph. That k ′ is the weight attached to the first forecast, f1t , can be emphasized
by expressing it in the alternative form

k ′ =
1
�21

1
�21

+ 1
�22

. (4)

This makes it clear that the weights are inversely proportional to the corresponding
forecast error variances, and gives an expression which is more amenable to gener-
alization below.

2.2. Pseudo out-of-sample comparisons of combined forecasts

The general approach to forecast evaluation that is followed in the literature is called
pseudo out-of-sample forecasting by Stock and Watson (2003b, §12.7) in their text-
book and empirical studies cited above, because it mimics real-time out-of-sample
forecasting yet the ‘future’ outcomes are known, and so forecast performance can be
assessed. To this end, a sample of available data, real or artificial, is divided into two
subsamples: thefirst is used for estimating the forecasting relationships, the second for
evaluating their forecast performance. Forecasting with a constant lead time, say one
step ahead, implies that the information set on which the forecast is based is updated
as the forecast moves through the evaluation subsample, and it is an open question
whether and, if so, how the estimated relationships should also be updated. The three
possibilities that figure prominently in the literature are referred to as fixed, recursive
and rolling schemes, and which scheme is used has a bearing on the asymptotics of
the various available tests (Clark and McCracken, 2001). However, many studies of
combined forecasts are based on informal comparisons ofMSFEs over the evaluation
subsample rather than on formal inference procedures, as noted above, whereupon the
choice of updating scheme is immaterial. The comparisons developed below remain
in this informal mode.
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We adopt the Clark–McCracken–West notational conventions and denote, in one-
step-ahead forecasting, the size of the available sample as T +1. This is divided
into the initial estimation (‘regression’) subsample of R observations and the second
evaluation (‘prediction’) subsample of P observations, with R+P=T +1. The first
forecast is made at time R of observation yR+1, and the last (the Pth) is made at time
T of observation yT+1. The pseudo out-of-sample MSFE of the combined forecast (1)
is then

�̂2C = 1
P

T +1∑
t=R+1

( yt − fCt)2.

We consider three combined forecasts: the first, denoted fst , is the simple average
of forecasts with k=0.5 in equation (1), associated forecast error est = yt − fst and
MSFE �̂2s ; next is the weighted average fwt using an estimate k̂ in equation (1), with
error ewt and MSFE �̂2w; finally, and hypothetically, the optimal combined forecast
fot is based on the optimal, but unknown weight ko and has hypothetical error eot .
Rearranging equation (1) as

fCt = f2t + k( f1t − f2t),
specializing to the simple and weighted average combination forecasts in turn, and
subtracting the corresponding expression for fot gives the following relations among
the forecast errors:

est − eot =−(0.5− ko)( f1t − f2t), ewt − eot =−(k̂− ko)( f1t − f2t).
Hence, the typical term in the MSFE difference �̂2s − �̂2w is

e2st − e2wt ={(0.5− ko)2− (k̂− ko)2}( f1t − f2t)2+ zt ,
where the cross-product term zt =2eot(k̂ − 0.5)( f1t − f2t) has expected value zero,
neglecting any correlation between the estimation subsample and the evaluation sub-
sample, and noting that eot is uncorrelated with e1t − e2t . Thus, the MSFE difference
is

�̂2s − �̂2w≈{(0.5− ko)2− (k̂− ko)2} 1P
T +1∑
t=R+1

( f1t − f2t)2, (5)

which shows the standard trade-off between bias, from assuming a different value of
the ‘true’ coefficient, and variance, in estimating that coefficient.
In comparing the simple average with the weighted average of forecasts, we note

that, as in the framework of Clark and West (2006), the models being compared are
nested: the null model has k=0.5; under the alternative, k /=0.5. Putting ko=0.5 in
equation (5) and noting that fwt − fst = (k̂−0.5)(f1t − f2t), under the null we expect to
find

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2009



336 Bulletin

�̂2s − �̂2w≈− 1
P

T +1∑
t=R+1

(fwt − fst)2<0. (6)

Thus, the simple average is expected to outperform the weighted average systemati-
cally, in a situation in which they are theoretically equivalent. The ‘null discrepancy’
on the right-hand side of equation (6) corresponds to the MSFE adjustment defined
in Clark and West’s equation (2.9), and can be calculated directly. It remains of the
same order of magnitude as P increases.
We note that this result reverses the choice of combined forecast which might

be made using the evidence of the regression subsample. Estimating k gives the
weighted average a better fit than the simple average in the estimation subsample, but
this amounts to overfitting in the present circumstances, and to choose the weighted
average on this basis is the wrong choice for the prediction subsample. Before dis-
cussing estimation of k , we consider generalizations to more than two competing
forecasts, as the number of forecasts being combined may be relevant to the choice
of estimator.

2.3. Combining many forecasts

The general framework presented above readily extends to more than two com-
peting forecasts, although some practical issues arise. With n competing point fore-
casts fit , i=1, . . . ,n, the combined forecast is

fCt =
n∑
i=1
ki fit ,

with
∑
ki=1 if the individual forecasts are unbiased and this is also desired for

the combined forecast. Granger and Ramanathan (1984) consider estimation of the
corresponding generalization of regression equation (3), namely

yt =�+�1f1t + · · ·+�nfnt +ut , (7)

and the question of whether or not the coefficient restrictions �=0 and/or∑�i=1
should be imposed. The unconstrained regression clearly achieves the smallest error
variance ex post, and gives an unbiased combined forecast even if individual fore-
casts are biased. However, if the practical objective is to improve ex ante forecast
performance, then the imposition of the restrictions improves forecast efficiency, as
shown by Clemen (1986), for example.
Estimation of the regression equation (7) runs into difficulty if the number of

individual forecasts being combined, n, is close to the number of observations in the
regression subsample, R. This is a feature of the applications by Stock and Watson
in the three articles referred to in the Introduction. The first article (Stock and
Watson, 1999) analyses the performance of 49 linear and nonlinear univariate fore-
casting methods, in combinations with weights estimated over 60 or 120 months; this
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is carried out for 215 different series. The second article (2003a) considers combina-
tions of up to 37 forecasts of US output growth based on individual leading indicators,
with weights estimated recursively, with an initial sample of 68 quarterly observa-
tions. The third article (2004) extends the growth forecasts to theG7 countries, and the
number of individual leading indicators considered for each country ranges between
56 and 75.
In these circumstances, Stock and Watson abandon estimation of the optimal

combining weights by regression or, as they put it, abandon estimation of the large
number of covariances among the different forecast errors. They follow the sugges-
tion of Bates and Granger (1969) noted in the final paragraph of section 2.1 and base
estimated weights on the generalization of expression (4); thus,

k̂ ′
i=

1/ s2i∑n
j=1 1/ s2j

, i=1, . . . ,n, (8)

where s2i , i=1, . . . ,n, is the MSFE of fit over an estimation data set. Earlier empiri-
cal studies summarized by Clemen (1989, p. 562) also support the suggestion ‘to
ignore the effects of correlations in calculating combining weights’. Stock and
Watson use several variants of this estimator, of which two are of particular interest.
The first is to raise each MSFE term in the above expression to the power �. With
0<�<1, this shrinks the weights towards equality, the case �=0 corresponding to
the simple average with ki=1/n. Or with �>1, more weight is placed on the better
performing forecasts than is indicated by the inverse MSFE weights. The second
variant is to calculate MSFEs as discounted sums of past squared forecast errors,
so that forecasts that have been performing best most recently receive the greatest
weight.
The common finding of the three cited studies in respect of comparisons of differ-

ent combined forecasts is described, as noted above, as the ‘forecast combination
puzzle – the repeated finding that simple combination forecasts outperform sophis-
ticated adaptive combination methods in empirical applications’ (Stock and Watson,
2004, p. 428). The differences are not necessarily large; for example, in the second
article the MSFE improvement of the simple average does not exceed 4% (2003a,
Table 4), but there are no reversals.
The explanation advanced in section 2.2 carries over to the case of n>2 competing

forecasts. Under the null, the simple average is expected to outperform the weighted
average in terms of their MSFEs, in the absence of the adjustment defined in equation
(6). Given n×1 vectors of forecasts and estimated weights, the weighted combina-
tion forecast is f ′

t k̂ . Taking expectations in the R sample, and conditioning on the
P sample, the expected difference in MSFE is equal to trace (�ff Vk̂), where �ff is the
P-sample moment matrix of the forecasts and Vk̂ is the mean-squared error matrix of
k̂ around the true value of equal weights. Thus, the expected discrepancy is smaller,
the more accurate, in this sense, are the estimates of the weights. This expression
simplifies to the null discrepancy or MSFE adjustment defined in equation (6).
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III. Empirical application: a Monte Carlo study
3.1. Experimental design

Our first experiment describes the behaviour of the MSFE discrepancy �̂2s − �̂2w anal-
ysed in section 2.2 under the null that k=0.5. Accordingly, we construct the two
competing forecasts with equal error variances, and compare their simple average
to a weighted average with an estimated weight. The data-generating process is the
Gaussian autoregressive AR(2) process

yt =�1yt−1+�2yt−2+ �t , �t ∼N (0,�2� ),

subject to the stationarity conditions �2<1+�1,�2<1−�1, −1<�2<1. The first
two autocorrelation coefficients are then

�1= �1
1−�2

, �2=�1�1+�2.

We set up two cases of competing one-step-ahead forecasts with equal error vari-
ances. In each case, the competing forecasts are mis-specified; the MMSE forecast
based on the AR(2) model does not feature in our comparisons.

Case 1. In the first case, both forecasts are based only on the most recent observa-
tion. The first forecast is the naı̈ve ‘no-change’ forecast and the second forecast is a
first-order autoregression with the same forecast error variance. Thus,

f1t = yt−1, f2t = (2�1−1)yt−1; �2i =2(1−�1)�2y , i=1, 2.

The contemporaneous correlation between the two forecast errors is equal to
�1. We consider values of �1 of 0.4 and 0.8, with �2 taking values in the range
−1<�2<1−�1; hence, the forecast errors are positively correlated, with �1 lying in
the range 0.2<�1<1 or 0.4<�1<1 respectively. In our experiments, the �2 values
are varied by steps of 0.1, except that the non-stationary boundaries are avoided by
taking a minimum value of−0.98 and a maximum value of 0.58 or 0.18 respectively.
Case 2. In the second case, the two forecasts are again based on only a single obser-
vation, but nowwith either a one-period or a two-period lag; each forecast is unbiased,
conditional on its limited information set. Thus,

f1t =�1yt−1, f2t =�2yt−2; �2i = (1−�2i )�
2
y , i=1, 2.

To equate the error variances, we choose parameter values such that �21=�22,
specifically �1=�2 to deliver �1=�2, or �1=−�2 to deliver �1=−�2. With these
restrictions, stationarity requires that −1<�2<0.5, with �1=±�2 as appropriate.
If �1=�2=0, there is an obvious singularity: the series is white noise, the forecasts
are equal to the mean of zero and have the same error, and ko is indeterminate.
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In each case, 1,000 artificial time-series samples are generated for each parameter
combination. After discarding a ‘start-up’ portion, each sample is divided into an
estimation subsample of R observations and an evaluation subsample of P obser-
vations. The forecast parameter values are assumed known, and the estimation sub-
sample, kept fixed and not updated, is used simply to estimate the combining
weights ko and k ′, by replacing the theoretical moments in equations (2) and (4),
respectively, by their sample equivalents. Estimates based on equation (2) need not
satisfy 0≤ k̂o≤ 1, as noted in section 2.1, especially if the correlation between the
competing forecast errors is large and positive, and we consider two possibilities.
One is to use the observed point estimate; the second, following widespread prac-
tice endorsed by Granger and Newbold (1986, §9.2), is to replace an estimate out-
side this range by the nearest boundary value, 0 or 1 as appropriate. There are then
four combined forecasts whose MSFEs are calculated over the last P observations:
three weighted averages, in turn using k̂ ′ and the observed and truncated k̂o, and the
simple average using k=0.5. The estimation cost of each weighted average is
expressed as the percentage increase in MSFE above that of the simple average,
namely 100(�̂2w− �̂2s )/ �̂2s .

3.2. Results for case 1

Figure 1 shows the mean (over 1,000 replications) percentage increase in MSFE over
the simple average for the three combined forecasts based on estimated weights, with
subsample sizes R=30 and P=6. The cost of estimating k is in general positive,
as anticipated. However, the different estimates give substantially different perfor-
mances, for both values of �1 used in these examples. First, estimating the optimal
weight, including the covariance term, increases the MSFE of the weighted average
by a rather greater amount than when using the estimate that neglects the forecast
error correlation. Second, restricting the point estimate of the optimal weight to the
(0, 1) interval makes little difference when the correlation between the forecast errors
is low, but improves the performance of the combined forecast as this correlation
increases. The forecast error correlation increases with �2, and is equal to 0.4 at the
point at which the two upper plots begin to diverge in panel (a) of Figure 1; its value
is 0.57 at the equivalent point in panel (b). In each panel, the last points plotted refer
to an almost degenerate case in which the first-order autocorrelation coefficient of the
data is close to 1 and the two competing forecasts, and hence their errors, are close
to equality.
The average cost of estimating the weight scarcely exceeds 5% for any of the

parameter combinations considered, and is often somewhat smaller. However, the
sampling variation in the MSFE cost is also small, such that the frequency with
which the simple average beats the weighted average across 1,000 replications is
typically high. Whenever the mean MSFE cost plotted in Figure 1 exceeds 0.5%,
the proportion of times the simple average dominates exceeds 90%; this proportion
increases as the mean cost increases.
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Figure 1. PercentageMSFE cost of weighted combination forecasts; case 1. (a)�1=0.4,R=30,P=6;
(b) �1=0.8,R=30,P=6

The key to the differences shown in Figure 1 is the sampling distribution of
the three different estimates of the weight. These are shown in Figure 2 for a
parameter combination at which the two upper lines in panel (b) of Figure 1 are
clearly separated, but not extremely so: the values are �1=0.8,�2=−0.1, at
which the forecast error correlation, neglected in the k ′ formula, is equal to 0.73.
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The distribution of the initial estimate of the optimal weight is shown in panel (a)
of Figure 2. In our sample of 1,000, there are 44 negative estimates, and these are
set equal to zero in panel (b), which results in an improvement in relative MSFE of
some 0.5%, as shown in Figure 1b. Note the changes in scale between the panels of
Figure 2: in particular, panels (b) and (c) have the same horizontal scale, to emphasize
the much smaller dispersion of the estimate k̂ ′, which in turn calls for a change in
vertical scale. The better performance of k̂ ′

in this experiment is striking, and supports
the recommendation to ignore the error covariances noted above, based on practical
applications.
Further support for a preference for k̂ ′

over k̂o is provided by the asymptotic
approximations to the variances of these estimators calculated in theAppendix. These
obey the relation

asy var(k̂ ′
)= (1−�)2 asy var(k̂o)

where � is the forecast error correlation coefficient. This correlation is positive in our
experiments, and can be expected to be positive more generally, as the innovation �t
is common to the competing forecast errors. The formulae developed in theAppendix
are seen to provide a good approximation to the simulation variance of the estimates
obtained from samples of R=30 observations. More generally, these results offer an
explanation of the relatively poor performance of combinations based on the optimal
weight.

3.3. Results for case 2

The results shown in Figure 3 are qualitatively similar to those reported for case
1. The cost of estimating k is in general positive. Again the different estimates of
the weights yield substantially different performances, the ranking of the different
estimates remaining as seen in case 1, with the performance of k̂ ′ again markedly
superior to that of k̂o, thanks to the much smaller dispersion of its sampling distribu-
tion. Comparing the performance of the two estimates of ko, Figure 3a shows that at
�1=�2=−0.5, at which the forecast error correlation, neglected in the k ′ expression,
is 0.833, truncating the original estimate gives an improvement in relative MSFE of
0.4%: this is the result of setting 39 negative estimates equal to zero and 34 estimates
equal to one, in our sample of 1,000. For �1=−�2=0.5 (see Figure 3b) there is
an improvement in relative MSFE of 0.35%; here the error correlation is slightly
smaller, at 0.805, and slightly fewer k̂o values are set to the boundary values, 35 and
23 respectively. An example of the sampling distributions of the weights presented
in Figure 4 shows the truncation effects diagrammatically, also that k̂ ′

again has
much smaller dispersion. In both panels of Figure 3, the truncation effect increases
as �1 approaches zero from above or below, when the correlation between the fore-
cast errors increases towards 1 and we approach the singularity at �1=�2=0 noted
above.
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Figure 3. Percentage MSFE cost of weighted combination forecasts; case 2. (a) �1=�2,R=30,P=6;
(b) �1=−�2,R=30,P=6

The behaviour of the estimates of the optimal weight differs between the
examples of case 1 and case 2 discussed above. In the first case, truncation of the
initial estimate is necessary on only one side; thus, in Figure 2b there is a pile-up
at zero but not at one. In the second case, the (0, 1) interval is breached on both
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sides, as shown in Figure 4. Recalling that k̂o <0 if s22<s12 and k̂o >1 if s21<s12, and
that the experiment is designed with �21=�22, the explanation of the asymmetry lies in
the sampling distribution of the variance estimates. In the example of case 1 shown
in Figure 2, the sample variance of s22 is some 35% greater than that of s21, resulting
in a tail of the distribution such that s22<s12 in 44 of 1,000 occasions, whereas the
equivalent condition for k̂o >1 never occurs in this sample.
The effects under discussion are finite-sample estimation effects, relating to the

size of the ‘regression’ sample, R, not the ‘prediction’ sample, P. Increasing P in our
experiments has little effect on the mean of the MSFE costs, such as those plotted
in Figures 1 and 3, although their sampling variance falls, as expected. Increasing R,
however, reduces the MSFE cost of the weighted average, due to increased accuracy
of the estimated weight, and at R=1, 200 there is essentially no gain in using the
simple average, and hence no puzzle.

3.4. Departures from equal weights

We briefly consider the alternative hypothesis ko /=0.5, and the trade-off between bias
and variance described in equation (5). A relevant question is how different must the
optimal weights be for the bias effect from assuming them equal to exceed the estima-
tion variance effect, so that the combination with estimated weights beats the simple
average? To admit a non-zero bias in the simple average, we alter one of the com-
peting forecasts considered above so that their error variances are no longer equal.
For particular parameter combinations of case 1 and case 2, respectively, we change
the coefficient on the lagged observation used to construct the second forecast, f2t , in
each case, in order to change its forecast error variance �22 away from equality with �21,
and hence to change the required combining weight. This weight is indicated by the
associated value of k ′ given by equation (4), deleting the forecast error covariance
term in the light of the above results. Otherwise the experimental design remains
unaltered, 1,000 replications being undertaken to estimate the average percentage
MSFE cost at each of a range of values of k ′. When this is equal to 0.5 the results
correspond to those given above; departures from 0.5 are indicated by referring to
the experiments as case 1* and case 2* respectively.
The results are presented in Figures 5 and 6. When the average percentage MSFE

cost takes a negative value, the combination with an estimated weight is doing better
than the simple average. The results might appear to show that, in these examples,
‘large’ departures from equal weights are not required in order to turn the compari-
son around in this way. The MSFE cost of the weighted estimate using k̂o is greater
than that using k̂ ′

; hence, positive costs persist for greater departures from equality.
However, in all the cases presented, the cost has turned negative, i.e. the simple
average has lost its advantage, before the weights are as different as (0.4, 0.6).
In numerical terms this does not seem to be a large departure from equality, but
this combination only becomes appropriate if one forecast has MSFE 50% greater
than its competitor. Differences as great as this in the performance of competing
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Figure 5. Percentage MSFE cost of weighted combination forecasts; case 1*. (a) �1=0.8,�2=−0.4,
R=30,P=6; (b) �1=0.4,�2=−0.2,R=30,P=6

forecasts are relatively unusual in empirical studies such as those of Stock and
Watson cited above, and so the bias effect does not dominate, hence the puzzle.
We return to this question following our second empirical illustration, taken from one
of their studies.
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IV. Empirical application: forecasts of US output growth during
the 2001 recession
For a practical application, we revisit the study of Stock and Watson (2003a), which
evaluates the performance of leading indicator forecasts during the 2001 recession
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TABLE 1

MSFEs of combined quarterly forecasts of output growth
(annual percentage rates)

RGDP IP
h=2 h=4 h=2 h=4

�̂2s 1.0078 3.8730 4.4663 23.0034
�̂2w 1.0319 4.0194 4.4926 23.2114
�̂2s − �̂2w −0.0241 −0.1464 −0.0263 −0.2080
Null discrepancy −0.0005 −0.0029 −0.0032 −0.0082
Remainder −0.0236 −0.1435 −0.0231 −0.1998

in the USA. This recession differed in many ways from its predecessors, and Stock
and Watson find that individual leading indicators also performed differently before
and during this recession. Their results show that there were gains to be had from
combining forecasts.
Of particular interest for our present purpose is their Table 4, which reports relative

MSFEs of various combination forecasts of annual growth rates of real GDP (RGDP)
and the Index of Industrial Production (IP) over the period 1999Q1–2002Q3, which
spans the recession. Forecast lead times of h=2 and 4 quarters are considered; thus,
P=13 when h=2 and P=11 when h=4. As in all the examples cited in section
2.3, the simple average of n=35 competing forecasts, each based on an individual
leading indicator, does better than a weighted average using inverse MSFE weights
as in equation (8). The weights are based on MSFEs calculated as discounted sums
of past squared forecast errors, with a quarterly discount factor of 0.95, over the
period from 1982Q1 to the forecast origin, hence R ranges between 65 and 79. From
their programs and database we recreate the combined forecast MSFEs on which
the relative MSFEs reported in their table are based. (Throughout their article Stock
and Watson report the MSFEs of individual and combined forecasts relative to the
MSFE of a benchmark autoregressive forecast, whereas we need the numerators of
these ratios.) We also calculate the null discrepancy or MSFE adjustment defined in
equation (6). The results are shown in Table 1.
The first two rows of the table give theMSFEs of the simple and weighted average

forecasts, and the MSFE difference is given in the third row. It is seen that the simple
average is the better forecast, by a small margin, in all four cases. The null discrep-
ancy defined in equation (6) is reported in the fourth row, and this is seen to represent
only a small part of the MSFE difference. The remainder, which has expected value
zero under the equal-weight null hypothesis, clearly has a non-zero sample value. The
expression in equation (6) gives the component in the fourth row as the (negative of
the) average squared difference between the two combination forecasts or, equiva-
lently, between their forecast errors, and its small size relative to the separate MSFEs
suggests that these forecasts are very close to one another. To check this, we plot
the forecast errors for all four cases under consideration in Figure 7, which confirms
this impression. The two combination forecast errors are virtually indistinguishable,
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and the difference between the two combination forecasts is unlikely to be of any
importance in the context of a practical decision problem.
The dates shown in Figure 7 correspond to the date of the forecast, the final out-

come available being that for 2002Q3. Stock and Watson note that at the time of
writing the NBER had not yet dated the trough: on 17 July 2003 this was announced
as November 2001 which, with the previous peak at March 2001, gave a contraction
duration of 8 months. Figure 7 shows that the combination forecasts substantially
overestimated growth throughout this period, starting from the quarter before the
peak and, in the year-ahead forecasts, extending well into the recovery phase.
In this example, the forecast combination puzzle is of no importance from a

practical point of view. From a statistical point of view, it is an example of the gain
in efficiency that can be obtained by imposing, rather than estimating, a restriction
that is approximately true. The distribution of estimated weights at the start of the
prediction period for the example in column 1 of Table 1 is presented in Figure 8,
and this shows rather little variation around the value of 1/n=0.029 used by the
simple average. The performance of the individual indicators varies over time, hence
so do their optimal combining weights, but when the relative weights are small this
variation is also likely to have little practical significance.
Optimal forecast weights are close to equality whenever the MSFEs of the indi-

vidual component forecasts are close to equality. Data on the individual indicator
forecast performance presented by Stock and Watson (2003a, Table 3) accord with
the impression given by Figure 8: there are some outlying good and bad forecasts,
such that the MSFE of the worst forecast is approximately two-and-a-half times that
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Figure 8. Distribution of weights in weighted average RGDP forecast (n=35, h=2, first period)
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of the best, but the majority differ much less. Each forecast is based on an h-step-
ahead distributed lag model expressing Yt+h in terms of past values of the dependent
variable, Yt ,Yt−1, . . ., and an individual indicator variable Xt ,Xt−1, . . .: the separate
indicator variables in general vary little in the additional information they bring to
the model. Writing the optimal forecast under squared error loss as the conditional
expectation given the relevant information set

fo,t+h=E(Yt+h |�t),

also defines the forecast error uo,t+h=Yt+h − fo,t+h as the cumulated effect of inno-
vations to the Y -process over t+1, . . . , t+h. Any other forecast fi,t+h(�it) based on
different information, different functional forms, and so forth shares this forecast
error: its error ui,t+h is given as

ui,t+h=Yt+h− fi,t+h(�it)=uo,t+h+{E(Yt+h |�t)− fi,t+h(�it)}
=uo,t+h+	i,t+h, say.

Thus, the underlying innovations provide a floor to the measures of forecast per-
formance that masks the comparative effect of the individual forecast discrepancies
	i,t+h. This appears to have been especially so during the 2001 recession.
Analyses of surveys of economic forecasters often find greater heterogeneity in

individual forecast performance than is observed in the above example. Individual
judgement plays a greater role in forecast surveys than in comparisons of forecasts
from competing statistical models. For the US Survey of Professional Forecasters
(SPF) see Davies and Lahiri (1999), and for the Bank of England Survey of External
Forecasters seeBoero, Smith andWallis (2008), for example.The survey proprietors –
see also Consensus Economics – nevertheless present simple averages across survey
respondents in their forecast publications (the SPF also reports median responses),
rather than weighted averages based on past forecast performance. On the other hand,
they are also interested in reporting current sentiment, good or bad, about future
macroeconomic developments.

V. Conclusions
Three main conclusions emerge from the foregoing analysis.
If the optimal combining weights are equal or close to equality, a simple average

of competing forecasts is expected to be more accurate, in terms of MSFE, than a
combination based on estimatedweights. The parameter estimation effect is not large,
nevertheless it explains the forecast combination puzzle.
However, if estimatedweights are to be used, then it is better to neglect any covari-

ances between forecast errors and base the estimates on inverseMSFEs alone, than to
use the optimal formula originally given by Bates and Granger for two forecasts, or
its regression generalization for many forecasts. This is a familiar recommendation
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in the literature, based on empirical studies. Our asymptotic approximation to the
variance of the estimated weight provides it with a firmer foundation.
When the number of competing forecasts is large, so that under equal weighting

each has a very small weight, the simple average can gain in efficiency by trading off
a small bias against a larger estimation variance. Nevertheless, in an example from
Stock and Watson (2003a), we find that the forecast combination puzzle rests on a
gain in MSFE that has no practical significance.

Final Manuscript Received: October 2008
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Appendix: The estimation variance of the combining weights
Wecalculate large-sample approximations to the variances of the two estimators of the
combiningweight, in the case of two forecastswith equal error variances�21=�22=�2e ,
say. The ‘inverseMSFE’coefficient based on equation (4), which neglects the covari-
ance between the forecast errors, is

k̂ ′ = (1/R)�e22t
(1/R)�e21t + (1/R)�e22t

= s22
s21+ s22

= 1
1+ (s21/ s22)

,

where R again denotes the estimation sample size. We use standard results on the
variance of functions of random variables obtained via Taylor series approximations,
sometimes called the ‘delta method’; see Stuart and Ord (1994, §10.6), for example.
For the nonlinear transformation, we have

var(1+ x)−1≈
(

∂(1+ x)−1
∂x

)2

var(x),

and evaluating the derivative at the mean of 1 gives

var(k̂ ′
)≈ 1
16
var

(
s21
s22

)
.

Using the expression for the variance of a ratio of positive random variables, we then
have

var(k̂ ′
)≈ 1
16

(
E(s21)
E(s22)

)2(var(s21)
E2(s21)

+ var(s
2
2)

E2(s22)
− 2cov(s

2
1, s22)

E(s21)E(s22)

)

= 1
16�4e

[var(s21)+var(s22)−2 cov(s21, s22)]. (A.1)

Turning to the optimal weight based on equation (2), the estimate is

k̂o= (1/R)�e22t − (1/R)�e1te2t
(1/R)�e21t + (1/R)�e22t − (2/R)�e1te2t

= s22− s12
s21+ s22−2s12

= 1

1+ s
2
1− s12
s22− s12

.

This last expression is of the same form as k̂ ′
, with s2i − s12 replacing s2i , i=1, 2. To

follow the same development as above we first note that

E(s2i − s12)= (1−�)�2e ,
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where � is the forecast error correlation coefficient. On expanding expressions for
the variances and covariance of s2i − s12, i=1, 2, and collecting terms, we then obtain

var(k̂o)≈ 1
16(1−�)2�4e

[var(s21)+var(s22)−2 cov(s21, s22)]

= 1
(1−�)2

var(k̂ ′
). (A.2)

Or, more directly, we observe that the expression in square brackets in equation (A.1)
is the variance of s21− s22, and that this is equal to the variance of (s21− s12)− (s22− s12).
As the errors of competing forecasts are in general positively correlated, the estima-
tion variance of the optimal weight can be expected to exceed that of the inverse
MSFE weight.
To implement expressions (A.1) and (A.2) for the forecasts used in our Monte

Carlo study, we evaluate the terms in square brackets for the assumed Gaussian
AR(2) data-generating process. The asymptotic variance of the sample variance of a
normally distributed autocorrelated series with autocorrelation coefficients �j is

var(s2)≈ 2�
4

R

∞∑
−∞

�2j .

This result is given in many time-series texts, whose authors usually cite Bartlett
(1946). In this article, Bartlett stated a more general result, for the covariance of two
sample autocovariances, and he subsequently gave an outline derivation in Bartlett
(1955, §9.1). Following the same approach gives the covariance term we require as

cov(s21, s22)≈
2
R

∞∑
−∞


212(j),

where 
12(j) is the cross-lagged covariance function of e1 and e2. So, altogether we
have

var(k̂ ′
)≈ 1
8R
(ACS1+ACS2−2×CCS)

where ACSi is the (doubly infinite) sum of squared autocorrelation coefficients of
series eit , i=1, 2, and CCS is the corresponding sum of their squared cross-lagged
correlation coefficients. In the set-up of our Monte Carlo experiments, these coeffi-
cients are obtained from the autocovariance-generating function of theAR(2) process
for yt and the related generating functions for the filtered series eit =hi(L)yt . The
infinite sums are truncated once the individual terms are sufficiently small, and
possible sensitivity of the final result to the truncation point is checked.
The resulting ‘theoretical’ standard deviations of the distributions of the two

estimators are shown in Table A.1 for a selection of the parameter values used in our
experiments, alongside their ‘empirical’ counterparts calculated from the simula-
tion sample distributions. With 1,000 independent replications at each parameter
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combination, the standard error of the estimated standard deviation (SD) is equal
to SD/

√
2000=0.022×SD. With this in mind, the large-sample approximation is

seen to provide reliable guidance to the simulation results for sample sizes as small
as 30, for most of the parameter combinations considered. The approximation be-
comes less good as the autocorrelation of the forecast error series increases, and in
these circumstances somewhat larger sample sizes are required before the equiva-
lence is restored. Nevertheless, the theoretical analysis of this Appendix provides
a more general support for a preference for k̂ ′ over k̂o: neglecting the covariances of
the competing forecast errors can be expected to lead to improved performance of
combined forecasts based on estimated weights.

TABLEA1

Empirical and theoretical standard deviations of k̂ ′ and k̂o

k̂ ′ k̂o
�2 � Empirical Theoretical Empirical Theoretical

Case 1: �1=0.4
0.4 0.67 0.086 0.104 0.323 0.243
0.2 0.50 0.087 0.097 0.193 0.174
0.0 0.40 0.079 0.084 0.139 0.131

−0.2 0.33 0.069 0.070 0.107 0.102
−0.4 0.29 0.059 0.057 0.083 0.078
−0.6 0.25 0.048 0.044 0.065 0.058
−0.8 0.22 0.036 0.030 0.047 0.038

Case 1: �1=0.8
0.1 0.89 0.040 0.046 0.549 0.416

−0.1 0.73 0.053 0.057 0.228 0.208
−0.3 0.62 0.051 0.053 0.146 0.137
−0.5 0.53 0.046 0.045 0.103 0.096
−0.7 0.47 0.037 0.034 0.072 0.064
−0.9 0.42 0.027 0.019 0.046 0.032

Case 2: �1=�2
−0.9 0.57 0.043 0.037 0.106 0.086
−0.7 0.71 0.051 0.049 0.184 0.172
−0.5 0.83 0.046 0.046 0.285 0.274
−0.3 0.93 0.033 0.032 0.480 0.468
−0.1 0.99 0.012 0.012 1.374 1.347
0.1 0.99 0.014 0.014 1.242 1.219
0.3 0.87 0.044 0.044 0.351 0.343

Case 2: �1=−�2
0.3 0.87 0.042 0.044 0.347 0.343
0.1 0.99 0.013 0.014 1.205 1.219

−0.1 0.99 0.011 0.012 1.315 1.347
−0.3 0.93 0.030 0.032 0.456 0.468
−0.5 0.83 0.043 0.046 0.270 0.274
−0.7 0.71 0.048 0.049 0.175 0.172
−0.9 0.57 0.041 0.037 0.103 0.086
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