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Abstract

Forecast combinations have frequently been found in empirical studies to produce

better forecasts on average than methods based on the ex-ante best individual forecast-

ing model. Moreover, simple combinations that ignore correlations between forecast

errors often dominate more refined combination schemes aimed at estimating the the-

oretically optimal combination weights. In this chapter we analyze theoretically the

factors that determine the advantages from combining forecasts (for example, the de-

gree of correlation between forecast errors and the relative size of the individual models’

forecast error variances). Although the reasons for the success of simple combination

schemes are poorly understood, we discuss several possibilities related to model mis-

specification, instability (non-stationarities) and estimation error in situations where

the numbers of models is large relative to the available sample size. We discuss the

role of combinations under asymmetric loss and consider combinations of point, interval

and probability forecasts.
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1 Introduction

Multiple forecasts of the same variable are often available to decision makers. This could

reflect differences in forecasters’ subjective judgements due to heterogeneity in their informa-

tion sets in the presence of private information or due to differences in modelling approaches.

In the latter case, two forecasters may well arrive at very different views depending on the

maintained assumptions underlying their forecasting models, e.g. constant versus time-

varying parameters, linear versus non-linear forecasting models etc.

Faced with multiple forecasts of the same variable, an issue that immediately arises is

how best to exploit information in the individual forecasts. In particular, should a single

dominant forecast be identified or should a combination of the underlying forecasts be used

to produce a pooled summary measure? From a theoretical perspective, unless one can

identify ex ante a particular forecasting model that generates smaller forecast errors than its

competitors (and whose forecast errors cannot be hedged by other models’ forecast errors),

forecast combinations offer diversification gains that make it attractive to combine individual

forecasts rather than relying on forecasts from a single model. Even if the best model could

be identified at each point in time, combination may still be an attractive strategy due to

diversification gains, although its success will depend on how well the combination weights

can be determined.

Forecast combinations have been used successfully in empirical work in diverse areas such

as forecasting Gross National Product, currency market volatility, inflation, money supply,

stock prices, meteorological data, city populations, outcomes of football games, wilderness

area use, check volume and political risks, c.f. Clemen (1989). Summarizing the simula-

tion and empirical evidence in the literature on forecast combinations, Clemen (1989, page

559) writes “The results have been virtually unanimous: combining multiple forecasts leads

to increased forecast accuracy.... in many cases one can make dramatic performance im-

provements by simply averaging the forecasts.” More recently, Makridakis and Hibon (2000)

conducted the so-called M3-competition which involved forecasting 3003 time series and

concluded (p. 458) “The accuracy of the combination of various methods outperforms,

on average, the specific methods being combined and does well in comparison with other
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methods.”. Similarly, Stock and Watson (2001, 2004) undertook an extensive study across

numerous economic and financial variables using linear and nonlinear forecasting models and

found that, on average, pooled forecasts outperform predictions from the single best model,

thus confirming Clemen’s conclusion. Their analysis has been extended to a large European

data set by Marcellino (2004) with broadly the same conclusions.

A simple portfolio diversification argument motivates the idea of combining forecasts,

c.f. Bates and Granger (1969). Its premise is that the information set underlying the

individual forecasts is often unobserved to the forecast user, maybe because it comprises

private information. In this situation it is not feasible to pool the underlying information

sets and construct a ‘super’ model that nests each of the underlying forecasting models.

For example, suppose that we are interested in forecasting some variable, y, and that two

predictions, ŷ1 and ŷ2 of its conditional mean are available. Let the first forecast be based on

the variables x1, x2, i.e., ŷ1 = g1(x1, x2), while the second forecast is based on the variables

x3, x4, i.e., ŷ2 = g2(x3, x4). Further, suppose that all variables enter with non-zero weights

in the forecasts and that the x−variables are imperfectly correlated. If {x1, x2, x3, x4} were

observable, it would be natural to construct a forecasting model based on all four variables,

ŷ3 = g3(x1, x2, x3, x4). On the other hand, if only the forecasts, ŷ1 and ŷ2 are observed by

the forecast user−while the underlying variables are unobserved−then the only option is to

combine these forecasts, i.e. to elicit a model of the type ŷ = gc(ŷ1, ŷ2). More generally,

the forecast user’s information set, F , may comprise n individual forecasts, F = {ŷ1, ..., ŷn},

where F is often not the union of the information sets underlying the individual forecasts,

∪ni=1Fi, but a much smaller subset. Of course, the higher the degree of overlap in the

information sets used to produce the underlying forecasts, the less useful a combination of

forecasts is likely to be, c.f. Clemen (1987).

It is difficult to fully appreciate the strength of the diversification or hedging argument

underlying forecast combination. Suppose the aim is to minimize some loss function be-

longing to a family of convex loss functions, L, and that some forecast, ŷ1, stochastically

dominates another forecast, ŷ2, in the sense that expected losses for all loss functions in L are

lower under ŷ1 than under ŷ2. While this means that it is not rational for a decision maker
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to choose ŷ2 over ŷ1 in isolation, it is easy to construct examples where some combination of

ŷ1 and ŷ2 generates a smaller expected loss than that produced using ŷ1 alone.

A second reason for using forecast combinations referred to by, inter alia, Figlewski

and Urich (1983), Kang (1986), Diebold and Pauly (1987), Makridakis (1989), Sessions and

Chatterjee (1989), Winkler (1989), Hendry and Clements (2002) and Aiolfi and Timmermann

(2004) and also thought of by Bates and Granger (1969) is that individual forecasts may be

very differently affected by structural breaks caused, for example, by institutional change or

technological developments. Some models may adapt quickly and will only temporarily be

affected by structural breaks, while others have parameters that only adjust very slowly to

new post-break data. The more data is available since the most recent break, the better one

might expect stable, slowly adapting models to perform relative to fast adapting ones as the

parameters of the former are more precisely estimated. Conversely, if the data window since

the most recent break is short, the faster adapting models can be expected to produce the

best forecasting performance. Since it is typically difficult to detect structural breaks in ‘real

time’, it is plausible that on average, i.e., across periods with varying degrees of stability,

combinations of forecasts from models with different degrees of adaptability will outperform

forecasts from individual models. This intuition is confirmed in Pesaran and Timmermann

(2005).

A third and related reason for forecast combination is that individual forecasting models

may be subject to misspecification bias of unknown form, a point stressed particularly by

Clemen (1989), Makridakis (1989), Diebold and Lopez (1996) and Stock and Watson (2001,

2004). Even in a stationary world, the true data generating process is likely to be more

complex and of a much higher dimension than assumed by the most flexible and general

model entertained by a forecaster. Viewing forecasting models as local approximations, it

is implausible that the same model dominates all others at all points in time. Rather, the

best model may change over time in ways that can be difficult to track on the basis of past

forecasting performance. Combining forecasts across different models can be viewed as a

way to robustify the forecast against such misspecification biases and measurement errors in

the data sets underlying the individual forecasts. Notice again the similarity to the classical
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portfolio diversification argument for risk reduction: Here the portfolio is the combination of

forecasts and the source of risk reflects incomplete information about the target variable and

model misspecification possibly due to non-stationarities in the underlying data generating

process.

A fourth argument for combination of forecasts is that the underlying forecasts may

be based on different loss functions. This argument holds even if the forecasters observe

the same information set. Suppose, for example, that forecaster A strongly dislikes large

negative forecast errors while forecaster B strongly dislikes large positive forecast errors.

In this case, forecaster A is likely to under-predict the variable of interest (so the forecast

error distribution is centered on a positive value), while forecaster B will over-predict it. If

the bias is constant over time, there is no need to average across different forecasts since

including a constant in the combination equation will pick up any unwanted bias. Suppose,

however, that the optimal amount of bias is proportional to the conditional variance of the

variable, as in Christoffersen and Diebold (1997) and Zellner (1986). Provided that the two

forecasters adopt a similar volatility model (which is not implausible since they are assumed

to share the same information set), a forecast user with a more symmetric loss function than

was used to construct the underlying forecasts could find a combination of the two forecasts

better than the individual ones.

Numerous arguments against using forecast combinations can also be advanced. Estima-

tion errors that contaminate the combination weights are known to be a serious problem for

many combination techniques especially when the sample size is small relative to the num-

ber of forecasts, c.f. Diebold and Pauly (1990), Elliott (2004) and Yang (2004). Whereas

non-stationarities in the underlying data generating process can be an argument for using

combinations it can also lead to instabilities in the combination weights and lead to difficul-

ties in deriving a set of combination weights that performs well, c.f. Clemen and Winkler

(1986), Diebold and Pauly (1987), Figlewski and Urich (1983), Kang (1986) and Palm and

Zellner (1992). In situations where the information sets underlying the individual forecasts

are unobserved, most would agree that forecast combinations can add value. However, when

the full set of predictor variables used to construct different forecasts is observed by the
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forecast user, it is more disputed whether a combination strategy should be used or whether

a single best ‘super’ model that embeds all information should be constructed, c.f. Chong

and Hendry (1986) and Diebold (1989).

If these arguments against forecast combinations seem familiar, this is not a coincidence.

In fact, there are many similarities between the forecast combination problem and the stan-

dard problem of constructing a single econometric specification. In both cases a subset of

predictors (or individual forecasts) has to be selected from a larger set of potential forecast-

ing variables and the choice of functional form mapping this information into the forecast as

well as the choice of estimation method have to be determined. There are clearly important

differences as well. First, it may be reasonable to assume that the individual forecasts are

unbiased in which case the combined forecast will also be unbiased provided that the com-

bination weights are constrained to sum to unity and an intercept is omitted. Provided that

the unbiasedness assumption holds for each forecast, imposing such parameter constraints

can lead to efficiency gains. One would almost never want to impose this type of constraint

on the coefficients of a standard regression model since predictor variables can differ signif-

icantly in their units, interpretation and scaling. Secondly, if the individual forecasts are

generated by quantitative models whose parameters are estimated recursively there is a po-

tential generated regressor problem which could bias estimates of the combination weights.

In part this explains why using simple averages based on equal weights provides a natural

benchmark. Finally, the forecasts that are being combined need not be point forecasts but

could take the form of interval or density forecasts.

As a testimony to its important role in the forecasting literature, many high-quality

surveys of forecast combinations have already appeared, c.f. Clemen (1989), Diebold and

Lopez (1996) and Newbold and Harvey (2001). This survey differs from earlier ones in many

important ways, however. First, we put more emphasis on the theory underlying forecast

combinations, particularly in regard to the diversification argument which is common also

in portfolio analysis. Second, we deal in more depth with recent topics−some of which were

emphasized as important areas of future research by Diebold and Lopez (1996)−such as

combination of probability forecasts, time-varying combination weights, combination under
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asymmetric loss and shrinkage.

The chapter is organized as follows. We first develop the theory underlying the gen-

eral forecast combination problem in Section 2. The following section discusses estimation

methods for the linear forecast combination problem. Section 4 considers non-linear combi-

nation schemes and combinations with time-varying weights. Section 5 discusses shrinkage

combinations while Section 6 covers combinations of interval or density forecasts. Section 7

extracts main conclusions from the empirical literature and Section 8 concludes.

2 The Forecast Combination Problem

Consider the problem of forecasting at time t the future value of some target variable, y,

after h periods, whose realization is denoted yt+h. Since no major new insights arise from the

case where y is multivariate, to simplify the exposition we shall assume that yt+h ∈ R. We

shall refer to t as the time of the forecast and h as the forecast horizon. The information set

at time t will be denoted by Ft and we assume that Ft comprises an N−vector of forecasts

ŷt+h,t = (ŷt+h,t,1, ŷt+h,t,2, ..., ŷt+h,t,N)
0 in addition to the histories of these forecasts up to time

t and the history of the realizations of the target variable, i.e. Ft = {ŷh+1,1, ŷt+h,t, y1, ..., yt}.

A set of additional information variables, xt, can easily be included in the problem.

The general forecast combination problem seeks an aggregator that reduces the informa-

tion in a potentially high-dimensional vector of forecasts, ŷt+h,t ∈ RN , to a lower dimensional

summary measure, C(ŷt+h,t;ωc) ∈ Rc ⊂ RN , where ωc are the parameters associated with

the combination. If only a point forecast is of interest, then a one-dimensional aggregator will

suffice. For example, a decision maker interested in using forecasts to determine how much

to invest in a risky asset may want to use information on either the mode, median or mean

forecast, but also to consider the degree of dispersion across individual forecasts as a way to

measure the uncertainty or ‘disagreement’ surrounding the forecasts. How low-dimensional

the combined forecast should be is not always obvious. Outside the MSE framework, it is not

trivially true that a scalar aggregator that summarizes all relevant information can always

be found.

Forecasts do not intrinsically have direct value to decision makers. Rather, they become
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valuable only to the extent that they can be used to improve decision makers’ actions, which

in turn affect their loss or utility. Point forecasts generally provide insufficient information

for a decision maker or forecast user who, for example, may be interested in the degree of

uncertainty surrounding the forecast. Nevertheless, the vast majority of studies on forecast

combinations has dealt with point forecasts so we initially focus on this case. We let ŷct+h,t =

C(ŷt+h,t;ωt+h,t) be the combined point forecast as a function of the underlying forecasts

ŷt+h,t and the parameters of the combination, ωt+h,t ∈Wt, whereWt is often assumed to be

a compact subset of RN and ωt+h,t can be time-varying but is adapted to Ft. For example,

equal weights would give g(ŷt+h,t;ωt+h,t) = (1/N)
PN

j=1 ŷt+h,t. Our choice of notation reflects

that we will mostly be thinking of ωt+h,t as combination weights, although the parameters

need not always have this interpretation.

2.1 Specification of Loss Function

To simplify matters we follow standard practice and assume that the loss function only

depends on the forecast error from the combination, ect+h,t = yt+h − g(ŷt+h,t;ωt+h,t), i.e.

L = L(et+h). The vast majority of work on forecast combinations assumes this type of loss,

in part because point forecasts are far more common than distribution forecasts and in part

because the decision problem underlying the forecast situation is not worked out in detail.

However, it should also be acknowledged that this loss function embodies a set of restrictive

assumptions on the decision problem, c.f. Granger and Machina (2004) and Elliott and

Timmermann (2004). In Section 6 we cover the more general case that combines interval or

distribution forecasts.

The parameters of the optimal combination, ω∗t+h,t ∈Wt, solve the problem

ω∗t+h,t = arg min
ωt+h,t∈Wt

E
£
L
¡
ect+h,t(ωt+h,t)

¢
|ŷt+h,t

¤
. (1)

Here the expectation is taken over the conditional distribution of et+h,t given Ft. Clearly

optimality is established within the assumed family ŷct+h,t = C(ŷt+h,t;ωt+h,t). Elliott and

Timmermann (2004) show that, subject to a set of weak technical assumptions on the loss

and distribution functions, the combination weights can be found as the solution to the
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following Taylor series expansion around µet+h,t = E[et+h,t|Ft]

ω∗t+h,t = arg min
ωt+h,t∈Wt

½
L(µet+h,t) +

1

2
L00µeE[(et+h,t − µet+h,t)

2|Ft]

+
∞X

m=3

Lm
µe

mX
i=0

1

i!(m− i)!
E[em−it+h,tµ

i
et+h,t

|Ft]

)
(2)

where Lk
µe
≡ ∂kL(et+h,t)/∂

kω|et+h,t=µet+h,t . In general, the entire moment generating function

of the forecast error distribution and all higher-order derivatives of the loss function will

influence the optimal combination weights which therefore reflect both the shape of the loss

function and the forecast error distribution.

The expansion in (2) suggests that the collection of individual forecasts ŷt+h,t is useful

in as far as it can predict any of the conditional moments of the forecast error distribution

that a decision maker cares about. Hence, ŷt+h,t,i gets a non-zero weight in the combination

if for any moment, emt+h,t, for which Lm
µe
6= 0, ∂E[emt+h,t|Ft]/∂ŷt+h,t,i 6= 0. For example, if the

vector of point forecasts can be used to predict the mean, variance, skew and kurtosis but

no other moments of the forecast error distribution, then the combined summary measure

could be based on those summary measures of ŷt+h,t that predict the first through fourth

moments.

Oftentimes it is simply assumed that the objective function underlying the combination

problem is mean squared error (MSE) loss

L(yt+h, ŷt+h,t) = θ(yt+h − ŷt+h,t)
2, θ > 0. (3)

For this case, the combined or consensus forecast seeks to choose a (possibly time-varying)

mapping Ct(ŷt+h,t;ωt+h,t) from the N-vector of individual forecasts ŷt+h,t to the real line,

Yt+h,t → R that best approximates the conditional expectation, E[yt+h|ŷt+h,t].1

Two levels of aggregation are thus involved in the combination problem. The first step

summarizes individual forecasters’ private information to produce point forecasts ŷt+h,t,i.

The only difference to the standard forecasting problem is that the ‘input’ variables are

forecasts from other models or subjective forecasts. This may create a generated regressor

1To see this, take expectations of (3) and differentiate with respect to to Ct(ŷt+h,t;ωt+h,t) to get

C∗t (ŷt+h,t;ωt+h,t) = E[Yt+h|Ft].
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problem that can bias the estimated combination weights, although this aspect is often

ignored. It could in part explain why combinations based on estimated weights often do not

perform well. The second step aggregates the vector of point forecasts ŷt+h,t to the consensus

measure C(ŷt+h,t;ωt+h,t). Information is lost in both steps. Conversely, the second step is

likely to lead to far simpler and more parsimonious forecasting models when compared to a

forecast based on the full set of individual forecasts or a “super model” based on individual

forecasters’ information variables. In general, we would expect information aggregation to

increase the bias in the forecast but also to reduce the variance of the forecast error. To the

extent possible, the combination should optimally trade off these two components. This is

particularly clear under MSE loss, where the objective function equals the squared bias plus

the forecast error variance, E[e2t+h,t] = E[et+h,t]
2 + V ar(et+h,t).2

2.2 Construction of a Super Model - pooling information

Let F c
t = ∪Ni=1Fit be the union of the forecasters’ individual information sets, or the ‘super’

information set. If F c
t were observed, one possibility would be to model the conditional mean

of yt+h as a function of all these variables, i.e.

ŷt+h,t = Cs(F c
t ;θt+h,s). (4)

Individual forecasts, i, instead take the form ŷt+h,t,i = Ci(Fit;θt+h,i).3 If only the individual

forecasts ŷt+h,t,i (i = 1, .., N) are observed, whereas the underlying information sets {Fit}
2Clemen (1987) demonstrates that an important part of the aggregation of individual forecasts towards an

aggregate forecast is an assessment of the dependence among the underlying models’ (‘experts’) forecasts and

that a group forecast will generally be less informative than the set of individual forecasts. In fact, group

forecasts only provide a sufficient statistic for collections of individual forecasts provided that both the

experts and the decision maker agree in their assessments of the dependence among experts. This precludes

differences in opinion about the correlation structure among decision makers. Taken to its extreme, this

argument suggests that experts should not attempt to aggregate their observed information into a single

forecast but should simply report their raw data to the decision maker.
3Notice that we use ωt+h,t for the parameters involved in the combination of the forecasts, ŷt+h,t, while

we use θt+h,t for the parameters relating the underlying information variables in Ft to yt+h.
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are unobserved by the forecast user, the combined forecast would be restricted as follows:

ŷt+h,t,i = Cc(ŷt+h,t,1, ..., ŷt+h,t,N ;θt+h,c). (5)

Normally it would be better to pool all information rather than first filter the information sets

through the individual forecasting models, which introduces the usual efficiency loss through

the two-stage estimation and also ignores correlations between the underlying information

sources. There are several potential problems with pooling the information sets, however.

One problem is−as already mentioned−that individual information sets may not be observ-

able or too costly to combine. Diebold and Pauly (1990, p. 503) remark that “While pooling

of forecasts is suboptimal relative to pooling of information sets, it must be recognized that

in many forecasting situations, particularly in real time, pooling of information sets is either

impossible or prohibitively costly.” Furthermore, in cases with many relevant input vari-

ables and complicated dynamic and nonlinear effects, constructing a “super model” using

the pooled information set, F c
t , is not likely to provide good forecasts given the well-known

problems associated with high-dimensional kernel regressions, nearest neighbor regressions

or other non-parametric methods. Although individual forecasting models will be biased and

may omit important variables, this bias can more than be compensated for by reductions

in parameter estimation error in cases where the number of relevant predictor variables is

much greater than N , the number of forecasts.4

2.3 Linear Forecast Combinations under MSE Loss

While in general there is no closed-form solution to (1), one can get analytical results by

imposing distributional restrictions or restrictions on the loss function. Unless the map-

ping, C, from ŷt+h,t to yt+h is modeled non-parametrically, optimality results for forecast

combination must be established within families of parametric combination schemes of the

form yct+h,t = C(ŷt+h,t;ωt+h,t). The general class of combination schemes in (1) comprises

non-linear as well as time-varying combination methods. We shall return to these but for
4When the true forecasting model mapping Fc

t to yt+h is infinite-dimensional, the model that optimally

balances bias and variance may depend on the sample size with a dimension that grows as the sample size

increases.
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now concentrate on the family of linear combinations, W l
t ⊂Wt, which are more commonly

used.5 To this end we choose weights, ωt+h,t = (ωt+h,t,1, ..., ωt+h,t,N)
0 to produce a combined

forecast of the form

ŷct+h,t = ω0t+h,tŷt+h,t. (6)

Under MSE loss, the combination weights are easy to characterize in population and only

depend on the first two moments of the joint distribution of yt+h and ŷt+h,t,⎛⎝ yt+h

ŷt+h,t

⎞⎠ ∼
⎛⎝µµyt+h,t

µŷt+h,t

¶⎛⎝ σ2yt+h,t σ0yŷt+h,t

σyŷt+h,t Σŷŷt+h,t

⎞⎠⎞⎠ . (7)

Minimizing E[e2t+h,t] = E[(yt+h −ω0t+h,tŷt+h,t)2], we have

ω∗t+h,t = arg min
ωt+h,t∈Wl

t

¡
(µyt+h,t −ω0t+h,tµŷt+h,t)2 + σ2yt+h,t +ω

0
t+h,tΣŷŷt+h,tωt+h,t − 2ω0t+h,tσyŷt+h,t

¢
.

This yields the first order condition

∂E[e2t+h,t]

∂ωt+h,t
= −(µyt+h,t −ω0t+h,tµŷt+h,t)µŷt+h,t +Σŷŷt+h,tωt+h,t − σyŷt+h,t = 0.

Assuming that Σŷŷt+h,t is invertible this has the solution

ω∗t+h,t = (µŷt+h,tµ
0
ŷt+h,t +Σŷŷt+h,t)

−1(µŷt+h,tµyt+h,t + σyŷt+h,t). (8)

This solution is optimal in population whenever yt+h and ŷt+h,t are joint Gaussian since in

this case the conditional expectation E[yt+h|ŷt+h,t] will be linear in ŷt+h,t. For the moment

we ignore time-variations in the conditional moments in (8), but as we shall see later on,

the weights can facilitate such effects by allowing them to vary over time. A constant can

trivially be included as one of the forecasts so that the combination scheme allows for an

intercept term, a strategy recommended (under MSE loss) by Granger and Ramanathan

(1984) and−for a more general class of loss functions−by Elliott and Timmermann (2004).

Assuming that a constant is included, the optimal (population) values of the constant and

the combination weights, ω∗0t+h,t and ω
∗
t+h,t, simplify as follows

ω∗0t+h,t = µyt+h,t −ω∗0t+h,tµŷt+h,t,

ω∗t+h,t = Σ−1ŷŷt+h,tσyŷt+h,t. (9)

5This, of course, does not rule out that the estimated weights vary over time as will be the case when the

weights are updated recursively as more data becomes available.
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These weights depend on the full conditional covariance matrix of the forecasts, Σŷŷt+h,t. In

general the weights have an intuitive interpretation and tend to be larger for more accurate

forecasts that are less strongly correlated with other forecasts. Notice that the constant,

ω∗0t+h,t, corrects for any biases in the weighted forecast ω
∗
t+h,tŷt+h,t.

In the following we explore some interesting special cases to demonstrate the determinants

of gains from forecast combination.

2.3.1 Diversification Gains

Under quadratic loss it is easy to illustrate the population gains from different forecast

combination schemes. This is an important task since, as argued by Winkler (1989, p. 607)

“The better we understand which sets of underlying assumptions are associated with which

combining rules, the more effective we will be at matching combining rules to forecasting

situations.” To this end we consider the simple combination of two forecasts that give rise

to errors e1 = y − ŷ1 and e2 = y − ŷ2. Without risk of confusion we have dropped the time

and horizon subscripts. Assuming that the individual forecast errors are unbiased, we have

e1 ∼ (0, σ21), e2 ∼ (0, σ22) where σ21 = var(e1), σ
2
2 = var(e2), σ12 = ρ12σ1σ2 is the covariance

between e1 and e2 and ρ12 is their correlation. Suppose that the combination weights are

restricted to sum to one, with weights (ω, 1−ω) on the first and second forecast, respectively.

The forecast error from the combination ec = y − ωŷ1 − (1− ω)ŷ2 takes the form

ec = ωe1 + (1− ω)e2. (10)

By construction this has zero mean and variance

σ2c(ω) = ω2σ21 + (1− ω)2σ22 + 2ω(1− ω)σ12. (11)

Differentiating with respect to ω and solving the first order condition, we have

ω∗ =
σ22 − σ12

σ21 + σ22 − 2σ12
, (12)

1− ω∗ =
σ21 − σ12

σ21 + σ22 − 2σ12
.

A greater weight is assigned to models producing more precise forecasts (lower forecast error

variances). A negative weight on a forecast clearly does not mean that it has no value to a
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forecaster. In fact when ρ12 > σ2/σ1 the combination weights are not convex and one weight

will exceed unity, the other being negative, c.f. Bunn (1985).

Inserting ω∗ into the objective function (11), we get the expected squared loss associated

with the optimal weights:

σ2c(ω
∗) =

σ21σ
2
2(1− ρ212)

σ21 + σ22 − 2ρ12σ1σ2
. (13)

It can easily be verified that σ2c(ω
∗) ≤ min(σ21, σ22). In fact, the diversification gain will only

be zero in the following special cases (i) σ1 or σ2 equal to zero; (ii) σ1 = σ2 and ρ12 = 1; or

(iii) ρ12 = σ1/σ2.

It is interesting to compare the variance of the forecast error from the optimal combination

(12) to the variance of the combination scheme that weights the forecasts inversely to their

relative mean squared error (MSE) values and hence ignores any correlation between the

forecast errors:

ωinv =
σ22

σ21 + σ22
, 1− ωinv =

σ21
σ21 + σ22

. (14)

These weights result in a forecast error variance

σ2inv =
σ21σ

2
2(σ

2
1 + σ22 + 2ρ12σ1σ2)

(σ21 + σ22)
2

. (15)

After some algebra we can derive the ratio of the forecast error variance under this scheme

relative to its value under the optimal weights, σ2c(ω
∗) in (13):

σ2inv
σ2c(ω

∗)
=

µ
1

1− ρ212

¶Ã
1−

µ
2σ12

σ21 + σ22

¶2!
. (16)

If σ1 6= σ2, this exceeds unity unless ρ12 = 0. When σ1 = σ2, this ratio is always unity

irrespective of the value of ρ12 and in this case ωinv = ω∗ = 1/2 . Equal weights are optimal

when combining two forecasts provided that the two forecast error variances are identical,

irrespective of the correlation between the two forecast errors.

Another interesting benchmark is the equal-weighted combination ŷew = (1/2)(ŷ1 + ŷ2).

Under these weights the variance of the forecast error is

σ2ew =
1

4
σ21 +

1

4
σ22 +

1

2
σ1σ2ρ12 (17)
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so the ratio σ2ew/σ
2
c(ω

∗) becomes:

σ2ew
σ2c(ω

∗)
=

µ
(σ21 + σ22)

2 − 4σ212
4σ21σ

2
2(1− ρ212)

¶
, (18)

which in general exceeds unity unless σ1 = σ2.

Finally, as a measure of the diversification gain obtained from combining the two forecasts

it is natural to compare σ2c(ω
∗) to min(σ21, σ

2
2). Suppose that σ1 > σ2 and define κ = σ2/σ1

so that κ < 1. We then have

σ2c(ω
∗)

σ22
=

1− ρ212
1 + κ2 − 2ρ12κ

. (19)

Figure 1 shows this expression graphically as a function of ρ12 and κ. The diversification

gain is a complicated function of the correlation between the two forecast errors, ρ12, and

the variance ratio of the forecast errors, κ. In fact, the derivative of the efficiency gain with

respect to either κ or ρ12 changes sign even for reasonable parameter values. Differentiating

(19) with respect to ρ12, we have

∂

µ
σ2c(ω

∗)

σ22

¶
/∂ρ12 ∝ κρ212 − (1 + κ2)ρ12 + κ.

This is a second order polynomial in ρ12 with roots (assuming κ < 1)

1 + κ2 ± (1− κ2)

2κ
= (κ; 1/κ).

Only when κ = 1 (so σ21 = σ22) does it follow that the efficiency gain will be an increasing

function of ρ12 - otherwise it will change sign, being positive on the interval [−1;κ] and

negative on [κ; 1] as can be seen from Figure 1. The figure shows that diversification through

combination is more effective (in the sense that it results in the largest reduction in the

forecast error variance for a given change in ρ12) when κ = 1.

2.3.2 Effect of Bias in individual forecasts

Problems can arise for forecast combinations when one or more of the individual forecasts

is biased, the combination weights are constrained to sum to unity and an intercept is

omitted from the combination scheme. Min and Zellner (1993) illustrate how bias in one
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or more of the forecasts along with a constraint that the weights add up to unity can lead

to suboptimality of combinations. Let y − ŷ1 = e1 ∼ (0, σ2) and y − ŷ2 = e2 ∼ (µ2, σ2),

cov(e1, e2) = σ12 = ρ12σ
2, so ŷ1 is unbiased while ŷ2 has a bias equal of µ2. Then the MSE of

ŷ1 is σ2, while the MSE of ŷ2 is σ2+µ22. The MSE of the combined forecast ŷc = ωŷ1+(1−ω)ŷ2
relative to that of the best forecast (ŷ1) is

MSE(ŷc)−MSE(ŷ1) = (1− ω)σ2
µ
(1− ω)

³µ2
σ

´2
− 2ω(1− ρ12)

¶
,

so MSE(ŷc) > MSE(ŷ1) if ³µ2
σ

´2
>
2ω(1− ρ12)

1− ω
.

This condition always holds if ρ12 = 1. Furthermore, the larger the bias, the more likely it

is that the combination will not dominate the first forecast. Of course the problem here is

that the combination is based on variances and not the mean squared forecast errors which

would account for the bias.

2.4 Optimality of Equal weights - general case

Equally weighted combinations occupy a special place in the forecast combination literature.

They are frequently either imposed on the combination scheme or used as a point towards

which the unconstrained combination weights are shrunk. Given their special role, it is

worth establishing more general conditions under which they are optimal in a population

sense. This sets a benchmark that proves helpful in understanding their good finite-sample

performance in simulations and in empirical studies with actual data.

LetΣe = E[ee0] be the covariance matrix of the individual forecast errors where e = ιy−ŷ

and ι is an N×1 column vector of ones. Again we drop time and horizon subscripts without

any risk of confusion. From (7) the vector of forecast errors has second moment

Σe = E[y2ιι0 + ŷŷ0 − 2yιŷ0] (20)

= (σ2y + µ2y)ιι
0 + µyµ

0
y +Σyy − 2ισ0yy − 2µyιµ0y.

Consider minimizing the expected forecast error variance subject to the constraint that
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the weights add up to one:

minω0Σeω (21)

s.t. ω0ι = 1.

The constraint ensures unbiasedness of the combined forecast provided that µ =µyι so that

µ2yιι
0 + µyµ

0
y − 2µyιµ0y = 0.

The Lagrangian associated with (21) is

L = ω0Σeω − λ(ω0ι−1)

which yields the first order condition

Σeω =
λ

2
ι. (22)

Assuming that Σe is invertible, after pre-multiplying by Σ−1e ι0 and recalling that ι0ω = 1

we get λ/2 = (ι0Σ−1e ι)
−1

. Inserting this in (22) we have the frequently cited formula for the

optimal weights:

ω∗ = (ι0Σ−1e ι)−1Σ−1e ι. (23)

Now suppose that the forecast errors have the same variance, σ2, and correlation, ρ.

Then we have

Σ−1e =
1

σ2(1− ρ)

µ
I− ρ

1 + (N − 1)ριι
0
¶

=
1

σ2(1− ρ)(1 + (N − 1)ρ) ((1 + (N − 1)ρ)I− ριι0) ,

where I is the N ×N identity matrix. Inserting this in (23) we have

Σ−1e ι =
ι

σ2(1 + (N − 1)ρ)

(ι0Σ−1e ι)−1 =
σ2(1 + (N − 1)ρ)

N
,

so

ω∗ =

µ
1

N

¶
ι. (24)
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Hence equal-weights are optimal in situations with an arbitrary number of forecasts when the

individual forecast errors have the same variance and identical pair-wise correlations. Notice

that the property that the weights add up to unity only follows as a result of imposing the

constraint ι0ω = 1 and need not otherwise hold more generally.

2.5 Optimal Combinations under Asymmetric Loss

Recent work has seen considerable interest in analyzing the effect of asymmetric loss on

optimal predictions, c.f., inter alia, Christoffersen and Diebold (1997), Granger and Pesaran

(2000) and Patton and Timmermann (2004). These papers show that the standard properties

of an optimal forecast under MSE loss−lack of bias, absence of serial correlation in the

forecast error at the single-period forecast horizon and increasing forecast error variance

as the horizon grows−cease to hold under asymmetric loss. It is therefore not surprising

that asymmetric loss also affects combination weights. To illustrate the significance of the

shape of the loss function for the optimal combination weights, consider linex loss. The

linex loss function is convenient to use since it allows us to characterize the optimal forecast

analytically. It takes the form, c.f. Zellner (1986),

L(et+h,t) = exp(aet+h,t)− aet+h,t + 1, (25)

where a is a scalar that controls the aversion towards either positive (a > 0) or negative

(a < 0) forecast errors and et+h,t = (yt+h − ω0h − ω0hbyt+h,t). First, suppose that the target
variable and forecast are joint Gaussian with moments given in (7). Using the well-known

result that if X ∼ N(µ, σ2), then E[ex] = exp(µ + σ2/2), the optimal combination weights

(ω∗0t+h,t,ω
∗
t+h,t) which minimize the expected loss E[L(et+h,t)|Ft], solve

min
ω0t+h,t,ωt+h,t

exp(a(µyt+h,t − ω0t+h,t − ω0t+h,tµŷt+h,t) +
a2

2
(σ2yt+h,t +ω

0
t+h,tΣŷŷt+h,tωt+h,t−2ω0t+h,tσyŷt+h,t))

−a(µyt+h,t − ω0t+h,t − ω0t+h,tµŷt+h,t).
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Taking derivatives, we get the first order conditions

exp(a(µyt+h,t − ω0t+h,t − ω0t+h,tµŷt+h,t) +
a2

2
(σ2yt+h,t +ω

0
t+h,tΣŷŷt+h,tωt+h,t−2ω0t+h,tσyŷt+h,t)) = 1

(−aµŷt+h,t +
a2

2
(2Σŷŷt+h,tωt+h,t−2σyŷt+h,t))+aµŷt+h,t = 0,

(26)

It follows that ω∗t+h,t = Σ−1ŷŷt+h,tσyŷt+h,t which when inserted in the first equation gives the

optimal solution

ω0t+h,t = µyt+h,t −ω∗0t+h,tµŷt+h,t+
a

2
(σ2yt+h,t −ω∗0t+h,tσyŷt+h,t),

ω∗t+h,t = Σ−1ŷŷt+h,tσyŷt+h,t. (27)

Notice that the optimal combination weights, ω∗t+h,t, are unchanged from the case with MSE

loss, (9), while the intercept accounts for the shape of the loss function and depends on the

parameter a. In fact, the optimal combination will have a bias, a
2
(σ2yt+h,t − ω∗0t+h,tσyŷt+h,t),

that reflects the dispersion of the forecast error evaluated at the optimal combination weights.

Next, suppose that we allow for a non-Gaussian forecast error distribution by assuming

that the joint distribution of (yt+h ŷ0t+h,t)
0 is a mixture of two Gaussian distributions driven

by a state variable, St+h, which can take two values, i.e. st+h = 1 or st+h = 2 so that⎛⎝ yt+h

ŷt+h,t

⎞⎠ ∼ N

⎛⎝⎛⎝ µyst+h

µyst+h

⎞⎠ ,

⎛⎝ σ2yst+h σ0yyst+h

σyyst+h Σyyst+h

⎞⎠⎞⎠ . (28)

Furthermore, suppose that P (St+h = 1) = p, while P (St+h = 2) = 1 − p. The two regimes

could correspond to recession and expansion states for the economy (Hamilton (1989)) or

bull and bear states for financial markets, c.f. Guidolin and Timmermann (2005).

Under this model,

et+h,t = yt+h − ω0t+h,t −ω0t+h,tŷt+h,t

∼ N
³
µyst+h − ω0t+h,t −ω0t+h,tµyst+h , σ

2
yst+h

+ω0t+h,tΣyst+hωt+h,t−2ω0t+h,tσyyst+h

´
.

Dropping time and horizon subscripts, the expected loss under this distribution, E[L(et+h,t)|byt+h,t],
19



is proportional to

p

½
exp(a(µy1 − ω0 −ω0µy1) +

a2

2
(σ2y1 +ω

0Σyy1ω−2ω0σyy1))− a(µy1 − ω0 − ω0µy1)
¾

+(1− p)

½
exp(a(µy2 − ω0 −ω0µy2) +

a2

2
(σ2y2 +ω

0Σyy2ω−2ω0σyy2))− a(µy2 − ω0 −ω0µy2)
¾
.

Taking derivatives, we get the following first order conditions for ω0 and ω

p(exp(ξ1)− 1) + (1− p)(exp(ξ2)− 1) = 0,

p
³
exp(ξ1)(−µy1 +

a

2
(Σyy1ω − σyy1)) + µy1

´
+

(1− p)
³
exp(ξ2)(−µy2 +

a

2
(Σyy2ω − σyy2)) + µy2

´
= 0,

where ξst+1 = a(µyst+1 − ω0 − ω0µyst+1) + a2

2
(σ2yst+1 + ω0Σyyst+1ω−2ω0σyyst+1). In general

this gives a set of N + 1 highly non-linear equations in ω0 and ω. The exception is when

µy1 = µy2, in which case (using the first order condition for ω0) the first order condition for

ω simplifies to

p exp(ξ1)(Σyy1ω − σyy1) + (1− p) exp(ξ2)(Σyy2ω − σyy2) = 0.

When Σyy2 = ϕΣyy1 and σyy2 = ϕσyy1, the solution to this equation again corresponds to

the optimal weights for the MSE loss function, (9):

ω∗= Σ−1yy1σyy1
. (29)

This restriction represents a very special case and ensures that the joint distribution of

(yt+h, ŷt+h,t) is elliptically symmetric−a class of distributions that encompasses the multi-

variate Gaussian. This is a special case of the more general result by Elliott and Timmermann

(2004) that if the joint distribution of (yt+h ŷ0t+h,t)
0 is elliptically symmetric and the expected

loss can be written as a function of the mean and variance of the forecast error, µe and σ2e,

i.e., E[L(et)] = g(µe, σ
2
e), then the optimal forecast combination weights, ω

∗, take the form

(29) and hence do not depend on the shape of the loss function (other than for certain tech-

nical conditions), while conversely the constant (ω0) reflects this shape. Thus, under fairly

general conditions on the loss functions, a forecast enters into the optimal combination with
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a non-zero weight if and only if its optimal weight under MSE loss is non-zero. Conversely, if

elliptical symmetry fails to hold, then it is quite possible that a forecast may have a non-zero

weight under loss functions other than MSE loss but not under MSE loss and vice versa.

The latter case is likely to be most relevant empirically since studies using regime switching

models often find that although the mean parameters may be constrained to be identical

across regimes, the variance-covariance parameters tend to be very different across regimes,

c.f., e.g. Guidolin and Timmermann (2005).

This example can be used to demonstrate that a forecast that does not add value most

of the time (in the sense that it is uncorrelated with the outcome variable) but does so only

a small part of the time when other forecasts break down will be included in the optimal

combination. We set all mean parameters equal to one, µy1 = µy2 = 1, µy1 = µy2 = ι, so

bias can be ignored, while the variance-covariance parameters are chosen as follows

σy1 = 3; σy2 = 1,

Σyy1 = 0.8× σ2y1 × I ; Σyy2 = 0.5× σ2y2 × I

σyy1 = σy1 ×
q
diag(Σyy1)¯

µ
0.9

0.2

¶
,

σyy2 = σy2 ×
q
diag(Σyy2)¯

µ
0.0

0.8

¶
,

where ¯ is the Hadamard or element by element multiplication operator.

In Table 1 we show the optimal weight on the two forecasts as a function of p for two

different values of a, namely a = 1, corresponding to strongly asymmetric loss, and a = 0.1,

representing less asymmetric loss. When p = 0.05 and a = 1 , so there is only a five percent

chance that the process is in state 1, the optimal weight on model 1 is 35%. This is lowered

to only 8% when the asymmetry parameter is reduced to a = 0.1. Hence the low probability

event has a greater effect on the optimal combination weights the higher the degree of

asymmetry in the loss function and the higher the variability of such events.
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Table 1: Optimal combination weights under asymmetric loss

a = 1 a = 0.1

p ω∗1 ω∗2

0.05 0.346 0.324

0.10 0.416 0.314

0.25 0.525 0.297

0.50 0.636 0.280

0.75 0.744 0.264

0.90 0.842 0.249

p ω∗1 ω∗2

0.05 0.081 0.365

0.10 0.156 0.353

0.25 0.354 0.323

0.50 0.620 0.283

0.75 0.831 0.250

0.90 0.940 0.234

This example can also be used to demonstrate why forecast combinations may work when

the underlying predictors are generated under different loss functions. Suppose that two

forecasters have linex loss with parameters a1 > 0 and a2 < 0 and suppose that both have

access to the same information set and use the same model to forecast the mean and variance

of Y , µ̂yt+1,t, σ̂
2
yt+1,1. Their forecasts are then computed as (c.f., Christoffersen and Diebold

(1997))

ŷt+1,t,1 = µ̂yt+1,t +
a1
2
σ̂2yt+1,t,

ŷt+1,t,2 = µ̂yt+1,t +
a2
2
σ̂2yt+1,t.

Each forecast includes an optimal bias whose magnitude is time-varying. For a forecast

user with symmetric loss, neither of these forecasts is particularly useful as each is biased.

Furthermore, the bias cannot simply be taken out by including a constant in the forecast

combination regression since the bias is time-varying. However, in this simple case, there

exists an exact linear combination of the two forecasts that is unbiased:

ŷct+1,t = ωŷt+1,t,1 + (1− ω)ŷt+1,t,2

ω =
−a2

a1 − a2
.

Of course this is a special case, but it nevertheless does show how biases in individual

forecasts can either be eliminated or reduced in a forecast combination.
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2.6 Combining as a Hedge against Non-stationarities

Hendry and Clements (2002) argue that forecast combinations may work so well empirically

because they provide insurance against what they refer to as extraneous (deterministic)

structural breaks. They consider a wide array of simulation designs for the break and find

that combinations work well under a shift in the intercept of a single variable in the data

generating process or when two or more positively correlated predictor variables are subject

to shifts in opposite directions - in which case forecast combinations can be expected to lead

to even larger reductions in the MSE. Their analysis considers the case where a break occurs

after the estimation period and does not affect the parameter estimates of the individual

forecasting models. They establish conditions on the size of the post-sample break ensuring

that an equal-weighted combination out-performs the individual forecasts.6

In support of the interpretation that structural breaks or model instability may explain

the good average performance of forecast combination methods, Stock and Watson (2004)

report that the performance of combined forecasts tends to be far more stable than that of the

individual constituent forecasts entering in the combinations. Interestingly, however, many

of the combination methods that attempt to build in time-variations in the combination

weights (either in the form of discounting of past performance or time-varying parameters)

have generally not proved to be successful, although there have been exceptions.

It is easy to construct examples of specific forms of non-stationarities in the underlying

data generating process for which simple combinations work better than the forecast from

the best single model. Aiolfi and Timmermann (2004) study the following simple model for

changes or shifts in the data generating process:

yt = Stf1t + (1− St)f2t + εyt,

ŷ1t = f1t + ε1t, (30)

ŷ2t = f2t + ε2t.

All variables are assumed to be Gaussian with factors f1t ∼ N(µ1, σ
2
f1
), f2t ∼ N(µ2, σ

2
f2
)

6See also Winkler (1989) who argues (p. 606) that “... in many situations there is no such thing as a

‘true’ model for forecasting purposes. The world around us is continually changing, with new uncertainties

replacing old ones.”
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and innovations εyt ∼ N(0, σ2εy), ε1t ∼ N(0, σ2ε1), ε2t ∼ N(0, σ2ε2). Innovations are mutually

uncorrelated and uncorrelated with the factors, while Cov(f1t, f2t) = σf1f2 . In addition, the

state transition probabilities are constant: P (St = 1) = p, P (St = 0) = 1− p. Let β1 be the

population projection coefficient of yt on ŷ1t while β2 is the population projection coefficient

of ŷt on ŷ2t, so that

β1 =
pσ2f1 + (1− p)σf1f2

σ2f1 + σ2ε1
,

β2 =
(1− p)σ2f2 + pσ2f1

σ2f2 + σ2ε2
.

The first and second moments of the forecast errors eit = yt− ŷit, can then be characterized

as follows:

Conditional on St = 1 :⎛⎝ e1t

e2t

⎞⎠ ∼ N

⎛⎝⎛⎝ (1− β1)µ1

µ1−β2µ2

⎞⎠ ,

⎛⎝ (1− β1)
2σ2f1+β

2
1σ
2
ε1
+σ2εy (1− β1)σ

2
f1
+σ2εy

(1− β1)σ
2
f1
+σ2εy σ2f1+β

2
2σ
2
f2
+β22σ

2
ε2
+σ2εy

⎞⎠⎞⎠ .

Conditional on St = 0 :⎛⎝ e1t

e2t

⎞⎠ ∼ N

⎛⎝⎛⎝ µ2−β1µ1
(1− β2)µ2

⎞⎠ ,

⎛⎝ β21σ
2
f1
+σ2f2+β

2
1σ
2
ε1
+σ2εy (1− β2)σ

2
f2
+σ2εy

(1− β2)σ
2
f2
+σ2εy (1− β2)

2σ2f2+β
2
2σ
2
ε2
+σ2εy

⎞⎠⎞⎠ .

Under the joint model for (yt, ŷ1t, ŷ2t) in (30), Aiolfi and Timmermann (2004) show

that the population MSE of the equal-weighted combined forecast will be lower than the

population MSE of the best model provided that the following condition holds:

1

3

µ
p

1− p

¶2
(1 + ψ2)

(1 + ψ1)
<

σ2f2
σ2f1

< 3

µ
p

1− p

¶2
(1 + ψ2)

(1 + ψ1)
. (31)

Here ψ1 = σ2ε1/σ
2
f1
, ψ2 = σ2ε2/σ

2
f2
are the noise-to-signal ratios for forecasts one and two,

respectively. Hence if p = 1− p = 1/2 and ψ1 = ψ2, the condition in (31) reduces to

1

3
<

σ2f2
σ2f1

< 3,

suggesting that equal-weighted combinations will provide a hedge against ‘breaks’ for a wide

range of values of the relative factor variance. How good an approximation this model
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provides for actual data can be debated, but regime shifts have been widely documented

for first and second moments of, inter alia, output growth, stock and bond returns, interest

rates and exchange rates.

Conversely, when combination weights have to be estimated, instability in the data gener-

ating process may cause underperformance relative to that of the best individual forecasting

model. Hence we can construct examples where combination is the dominant strategy in the

absence of breaks or other forms of non-stationarities, but becomes inferior in the presence

of breaks. This is likely to happen if the conditional distribution of the target variable given

a particular forecast is stationary, whereas the correlations between the forecasts changes.

In this case the combination weights will change but the individual models’ performance

remain the same.

3 Estimation

Forecast combinations, while appealing in theory, have the disadvantage over using a sin-

gle forecast that they introduce parameter estimation error in cases where the combination

weights need to be estimated. This is an important point - so much so, that seemingly

suboptimal combination schemes such as equal-weighting have widely been found to dom-

inate combination methods that would be optimal in the absence of parameter estimation

errors. Finite-sample errors in the estimates of the combination weights can lead to poor

performance of combination schemes that dominate in large samples.7

3.1 To Combine or not to Combine

The first question to answer in the presence of multiple forecasts of the same variable is

of course whether or not to combine the forecasts or rather simply attempt to identify the

7Yang (2004) demonstrates theoretically that linear forecast combinations can lead to far worse per-

formance than those from the best single forecasting model due to large variability in estimates of the

combination weights and proposes a range of recursive methods for updating the combination weights that

ensure that combinations achieve a performance similar to that of the best individual forecasting method up

to a constant penalty term and a proportionality factor.
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single best forecasting model. Here it is important to distinguish between the situation

where the information sets underlying the individual forecasts is observed from that where

they are unobserved to the forecast user. When the information sets are unobserved it is

often justified to combine forecasts provided that the private (non-overlapping) parts of the

information sets are sufficiently important. Whether this is satisfied can be difficult to assess,

but diagnostics such as the correlation between forecasts or forecast errors can be considered.

When forecast users do have access to the full information set used to construct the

individual forecasts, Chong and Hendry (1986) and Diebold (1989) argue that combinations

may be less justified in the sense that successful combination indicates misspecification of

the individual models and so a better individual model should be sought. Finding a ‘best’

model may of course be rather difficult if the space of models included in the search is

high dimensional and the time-series short. As Clemen (1989) nicely puts it: “Using a

combination of forecasts amounts to an admission that the forecaster is unable to build a

properly specified model. Trying ever more elaborate combining models seems to add insult

to injury as the more complicated combinations do not generally perform that well.”

Simple tests of whether one forecast dominates another forecast are neither sufficient nor

necessary for settling the question of whether or not to combine. This follows since we can

construct examples where (in population) forecast ŷ1 dominates forecast ŷ2 (in the sense

that it leads to lower expected loss), yet it remains optimal to combine the two forecasts.8

Similarly, we can construct examples where forecast ŷ1 and ŷ2 generate identical expected

loss, yet it is not optimal to combine them−most obviously if they are perfectly correlated,

but also due to estimation errors in the combination weights.

What is called for more generally is a test of whether one forecast−or more generally a set

of forecasts−encompasses all information contained in another forecast (or sets of forecasts).

In the context of MSE loss functions, forecast encompassing tests have been developed by

Chong and Henry (1986). Point forecasts are sufficient statistics under MSE loss and a test

8Most obviously, under MSE loss, when σ(y−ŷ1) > σ(y−ŷ2), and cor(y−ŷ1, y−ŷ2) 6= σ(y−ŷ2)/σ(y−ŷ1),
it will generally be optimal to combine the two forecasts, c.f. Section 2.
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of pair-wise encompassing can be based on the regression

yt+h = β0 + β1ŷt+h,t,1 + β2ŷt+h,t,2 + et+h,t, t = 1, 2, ...T − h. (32)

Forecast 1 encompasses forecast 2 when the parameter restriction (β0 β1 β2) = (0 1 0) holds,

while conversely if forecast 2 encompasses forecast 1 we have (β0 β1 β2) = (0 0 1). All other

outcomes mean that there is some information in both forecasts which can then be usefully

exploited. Notice that this is an argument that only holds in population. It is still possible

in small samples that ignoring one forecast can lead to better out-of-sample forecasts even

though, asymptotically, the coefficient on the omitted forecast in (32) differs from zero.

More generally, a test that some model, e.g., model 1, forecast encompasses all other

models can be based on a test of β2 = ... = βN in the regression

yt+h − ŷt+h,t,1 = β0 +
NX
i=2

βiŷt+h,t,i + et+h,t.

Inference is complicated by whether forecasting models are nested or non-nested, c.f.

West (2005) and the references therein.

In situations where the data is not very informative and it is not possible to identify a

single dominant model, it makes sense to combine forecasts. Makridakis and Winkler (1983)

explain this well (page 990): “When a single method is used, the risk of not choosing the best

method can be very serious. The risk diminishes rapidly when more methods are considered

and their forecasts are averaged. In other words, the choice of the best method or methods

becomes less important when averaging.” They demonstrate this point by showing that the

forecasting performance of a combination strategy improves as a function of the number of

models involved in the combination, albeit at a decreasing rate.

Swanson and Teng (2001) propose to use model selection criteria such as the SIC to choose

which subset of forecasts to combine. This approach does not require formal hypothesis

testing so that size distortions due to the use of sequential pre-tests, can be avoided although,

of course, consistency of the selection approach must be established in the context of the

particular sampling experiment appropriate for a given forecasting situation. In empirical

work reported by these authors the combination chosen by SIC appears to provide the best
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overall performance and rarely gets dominated by other methods in out-of-sample forecasting

experiments.

Once it has been established whether to combine or not, there are various ways in which

the combination weights, ω̂t+h,t, can be estimated. We will discuss some of these methods in

what follows. A theme that is common across estimators is that estimation errors in forecast

combinations are generally important especially in cases where the number of forecasts, N ,

is large relative to the length of the time-series, T .

3.2 Least Squares Estimators of the Weights

It is common to assume a linear-in-weights model and estimate combination weights by

ordinary least squares, regressing realizations of the target variable, yτ on the N-vector of

forecasts, ŷτ using data over the period τ = h, ..., t:

ω̂t+h,t = (
t−hX
τ=1

ŷτ+h,τ ŷ
0
τ+h,τ )

−1
t−hX
τ=1

ŷτ+h,τyτ+h. (33)

Different versions of this basic least squares projection have been proposed. Granger and

Ramanathan (1984) consider three regressions

(i) yt+h = ω0h +ω
0
hŷt+h,t + εt+h

(ii) yt+h = ω0hŷt+h,t + εt+h (34)

(iii) yt+h = ω0hŷt+h,t + εt+h, s.t. ω0hι = 1.

The first and second of these regressions can be estimated by standard least squares, the

only difference being that the second equation omits an intercept term. The third regression

omits an intercept and can be estimated through constrained least squares. The first, and

most general, regression does not require that the individual forecasts are unbiased since

any bias can be adjusted through the intercept term, ω0h. In contrast, the third regression

is motivated by an assumption of unbiasedness of the individual forecasts. Imposing that

the weights sum to one then guarantees that the combined forecast is also unbiased. This

specification may not be efficient, however, as the latter constraint can lead to efficiency

losses as E[ŷt+h,tεt+h] 6= 0. One could further impose convexity constraints 0 ≤ ωh,i ≤ 1,
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i = 1, .., N to rule out that the combined forecast lies outside the range of the individual

forecasts.

Another reason for imposing the constraint ω0hι = 1 has been discussed by Diebold

(1988). He proposes the following decomposition of the forecast error from the combination

regression:

ect+h,t = yt+h − ω0h − ω0hŷt+h,t (35)

= −ω0h + (1−ω0hι)yt+h +ω0h(yt+hι− ŷt+h,t)

= −ω0h + (1−ω0hι)yt+h +ω0het+h,t,

where et+h,t is the N × 1 vector of h-period forecast errors from the individual models.

Oftentimes the target variable, yt+h, is quite persistent whereas the forecast errors from the

individual models are not serially correlated even when h = 1. It follows that unless it

is imposed that 1 − ω0hι =0, then the forecast error from the combination regression will

typically be serially correlated and hence be predictable itself.

3.3 Relative Performance Weights

Estimation errors in the combination weights tend to be particularly large due to difficulties

in precisely estimating the covariance matrix, Σe. One answer to this problem is to simply

ignore correlations across forecast errors. Combination weights that reflect the performance

of each individual model relative to the performance of the average model, but ignore corre-

lations across forecasts have been proposed by Bates and Granger (1969) and Newbold and

Granger (1974). Both papers argue that correlations can be poorly estimated and should be

ignored in situations with many forecasts and short time-series. This effectively amounts to

treating Σe as a diagonal matrix, c.f. Winkler and Makridakis (1983).

Stock and Watson (2001) propose a broader set of combination weights that also ignore

correlations between forecast errors but base the combination weights on the models’ relative

MSE performance raised to various powers. Let MSEt+h,t,i = (1/v)
Pt

τ=t−v e
2
τ,τ−h,i be the

ith forecasting model’s MSE at time t, computed over a window of the previous v periods.
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Then

ŷct+h,t =
NX
i=1

ω̂t+h,t,iŷt+h,t,i

ω̂t+h,t,i =
(1/MSEκ

t+h,t,i)PN
j=1(1/MSEκ

t+h,t,j)
. (36)

Setting κ = 0 assigns equal weights to all forecasts, while forecasts are weighted by the inverse

of their MSE when κ = 1. The latter strategy has been found to work well in practice as

it does not require estimating the off-diagonal parameters of the covariance matrix of the

forecast errors. Such weights therefore disregard any correlations between forecast errors and

so are only optimal in large samples provided that the forecast errors are truly uncorrelated.

3.4 Moment Estimators

Outside the quadratic loss framework one can base estimation of the combination weights

directly on the loss function, c.f. Elliott and Timmermann (2004). Let the realized loss in

period t+ h be

L(et+h;ω) = L(ω|yt+h, byt+h,t,ψL),

where ψL are the (given) parameters of the loss function. Then ω̃h = (ω0h ω
0
h)
0 can be

obtained as an M-estimator based on the sample analog of E[L(et+h)] using a sample of

T − h observations {yτ , byτ,τ−h}Tτ=h+1:
L̄(ω) = (T − h)−1

TX
τ=h+1

L(eτ,τ−h(ω̃h);θL).

Taking derivatives, one can use the generalized method of moments (GMM) to estimate

ωT+h,t from the quadratic form

min
ωT+h,T

Ã
TX

τ=h+1

L0(eτ,τ−h(ω̃h);ψL)

!0
Λ−1

Ã
TX

τ=h+1

L0(eτ,τ−h(ω̃h);ψL)

!
, (37)

where Λ is a (positive definite) weighting matrix and L0 is a vector of derivatives of the mo-

ment conditions with respect to ω̃h. Consistency and asymptotic normality of the estimated

weights is easily established under standard regularity conditions.
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3.5 Non-parametric Combination Schemes

The estimators considered so far require stationarity at least for the moments involved in the

estimation. To be empirically successful, they also require a reasonably large data sample

(relative to the number of models, N) as they otherwise tend not to be robust to outliers, c.f.

Gupta and Wilton (1987) p. 358: “...combination weights derived using minimum variance

or regression are not robust given short data samples, instability or nonstationarity. This

leads to poor performance in the prediction sample.” In many applications the number of

forecasts, N , is large relatively to the length of the time-series, T . In this case, it is not

feasible to estimate the combination weights by OLS. Simple combination schemes such as

an equal-weighted average of forecasts yewt+h,t = ι0ŷt+h,t/N or weights based on the inverse

MSE-values offer are an attractive option in this situation.

Simple, rank-based weighting schemes can also be constructed and have been used with

some success in mean-variance analysis in finance, c.f. Wright and Satchell (2003). These

take the form ωt+h,t = f(Rt,t−h,1, ...,Rt,t−h,N), where Rt,t−h,i is the rank of the ith model

based on its h−period performance up to time t. The most common scheme in this class is

to simply use the median forecast as proposed by authors such as Armstrong (1989), Hendry

and Clements (2002) and Stock and Watson (2001, 2003). Alternatively one can consider a

triangular weighting scheme that lets the combination weights be inversely proportional to

the models’ rank, c.f. Aiolfi and Timmermann (2004):

ω̂t+h,t,i = R−1t+h,t,i/(
NX
i=1

R−1t+h,t,i). (38)

Again this combination ignores correlations across forecast errors. However, since ranks are

likely to be less sensitive to outliers, this weighting scheme can be expected to be more robust

than the weights in (33) or (36).

Another example in this class is spread combinations. These have been proposed by

Aiolfi and Timmermann (2004) and consider weights of the form

ω̂t+h,t,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+ω̄
αN

if Rt+h,t,i ≤ αN

0 if αN < Rt+h,t,i < (1− α)N

−ω̄
αN

if Rt+h,t,i ≤ (1− α)N

, (39)
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where α is the proportion of top models that - based on performance up to time t - gets

a weight of (1 + ω̄)/αN . Similarly, a proportion α of models gets a weight of −ω̄/αN .

The larger the value of α, the wider the set of top and bottom models that are used in

the combination. Similarly, the larger is ω̄, the bigger the difference in weights on top and

bottom models. The intuition for such spread combinations can be seen from (12) when

N = 2 so α = 1/2. Solving for ρ12 we see that ω
∗ = 1 + ω̄ provided that

ρ12 =
1

2ω̄ + 1

µ
σ2
σ1

ω̄ +
σ1
σ2
(1 + ω̄)

¶
.

Hence if σ1 ≈ σ2, spread combinations are close to optimal provided that ρ12 ≈ 1. The

second forecast provides a hedge for the performance of the first forecast in this situation.

In general, spread portfolios are likely to work well when the forecasts are strongly collinear.

Gupta and Wilton (1987) propose an odds ratio combination approach based on a matrix

of pair-wise odds ratios. Let πij be the probability that the ith forecasting model outperforms

the jth model out-of-sample. The ratio oij = πij/πji is then the odds that model i will

outperform model j and oij = 1/oji. Filling out the N × N odds ratio matrix O with i, j

element oij requires specifying N(N − 1)/2 pairs of probabilities of outperformance, πij.

An estimate of the combination weight ω is obtained from the solution to the system of

equations (O−NI)ω = 0. Since O has unit rank with a trace equal to N , ω can be found

as the normalized eigenvector associated with the largest (and only non-zero) eigenvalue of

O. This approach gives weights that are insensitive to small changes in the odds ratio and

so does not require large amounts of data. Also, as it does not account for dependencies

between the models it is likely to be less sensitive to changes in the covariance matrix than

the regression approach. Conversely, it can be expected to perform worse if such correlations

are important and can be estimated with sufficient precision.9

9Bunn (1975) proposes a combination scheme with weights reflecting the probability that a model pro-

duces the lowest loss, i.e.

pt+h,t,i = Pr(L(et+h,t,i) < L(et+h,t,j)) for all j 6= i

ŷct+h,t =
NX
i=1

pt+h,t,iŷt+h,t,i.

Bunn discusses how pt+h,t,i can be updated based on a model’s track historical record using the proportion
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3.6 Pooling, Clustering and Trimming

Rather than combining the full set of forecasts, it is often advantageous to discard the

models with the worst performance (trimming). Combining only the best models goes under

the header ‘use sensible models’ in Armstrong (1989). This is particularly important when

forecasting with nonlinear models whose predictions are often implausible and can lie outside

the empirical range of the target variable. One can base whether or not to trim−and by how

much to trim−on formal tests or on more lose decision rules.

To see why trimming can be important, suppose a fraction α of the forecasting models

contain valuable information about the target variable while a fraction 1−α is pure noise. It

is easy to see in this extreme case that the optimal forecast combination puts zero weight on

the pure noise forecasts. However, once combination weights have to be estimated, forecasts

that only add marginal information should be dropped from the combination since the cost

of their inclusion−increased parameter estimation error−is not matched by similar benefits.

The ‘thick modeling’ approach−thus named because it seeks to exploit information in a

cross-section (thick set) of models−proposed by Granger and Jeon (2004) is an example of a

trimming scheme that removes poorly performing models in a step that precedes calculation

of combination weights. Granger and Jeon argue that “an advantage of thick modeling is

that one no longer needs to worry about difficult decisions between close alternatives or

between deciding the outcome of a test that is not decisive.”

Grouping or clustering of forecasts can be motivated by the assumption of a common

factor structure underlying the forecasting models. Consider the factor model

Yt+h = µy + β
0
yft+h + εyt+h, (40)

ŷt+h,t = µŷ +Bf t+h + εt+h,

where ft+h is an nf×1 vector of factor realizations satisfyingE[ft+hεyt+h] = 0, E[ft+hε0t+h] = 0

and E[ft+hf 0t+h] = Σf . βy is an nf × 1 vector while B is an N ×nf matrix of factor loadings.

For simplicity we assume that the factors have been orthogonalized. This will obviously hold

if they are constructed as the principal components from a large data set and can otherwise

of times up to the current period where a model outperformed its competitors.
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be achieved through rotation. Furthermore, all innovations ε are serially uncorrelated with

zero mean, E[ε2yt+h] = σ2εy , E[εyt+hεt+h] = 0 and the noise in the individual forecasts is

assumed to be idiosyncratic (model specific), i.e.,

E[εit+hεjt+h] =

⎧⎨⎩ σ2εi if i = j

0 if i 6= j
.

We arrange these values on a diagonal matrix E[εt+hε
0
t+h] = Dε. This gives the following

moments ⎛⎝ yt+h

ŷt+h,t

⎞⎠ ∼
⎛⎝⎛⎝ µy

µŷ

⎞⎠ ,

⎛⎝ β0yΣfβy + σ2εy β0yΣfB
0

BΣfβy BΣfB
0+Dε

⎞⎠⎞⎠ .

Also suppose either that µŷ= 0, µy = 0 or a constant is included in the combination scheme.

Then the first order condition for the optimal weights is, from (8),

ω∗ = (BΣfB
0+Dε)

−1BΣfβy. (41)

Further suppose that theN forecasts of the nf factors can be divided into appropriate groups

according to their factor loading vectors bi such that
Pnf

i=1 dim(bi) = N :

B =

⎛⎜⎜⎜⎜⎜⎜⎝
b1 0 · · · 0

0 b2 0 · · ·
... 0

. . . 0

0 · · · 0 bnf

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the first term on the right hand side of (41) is given by

BΣfB
0+Dε =

⎛⎜⎜⎜⎜⎜⎜⎝
b1b

0
1 0 · · · 0

0 b2b
0
2 0 · · ·

... 0
. . . 0

0 · · · 0 bnfb
0
nf

⎞⎟⎟⎟⎟⎟⎟⎠Dσ2F
+Dε, (42)

where DσF is a diagonal matrix with σ2f1 in its first n1 diagonal places followed by σ2f2

in the next n2 diagonal places and so on and Dε is a diagonal matrix with V ar(εit) as

the ith diagonal element. Thus the matrix in (42) and its inverse will be block diagonal.

Provided that the forecasts tracking the individual factors can be grouped and have similar
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factor exposure (bi) within each group, this suggests that little is lost by pooling forecasts

within each cluster and ignoring correlations across clusters. In a subsequent step, sample

counterparts of the optimal combination weights for the grouped forecasts can be obtained

by least-squares estimation. In this way, far fewer combination weights (nf rather than N)

have to be estimated. This can be expected to decrease forecast errors and thus improve

forecasting performance.

Building on these ideas Aiolfi and Timmermann (2004) propose to sort forecasting models

into clusters using a K-mean clustering algorithm based on their past MSE performance.

As the previous argument suggests, one could alternatively base clustering on correlation

patterns among the forecast errors.10 Their method identifies K clusters. Let ŷkt+h,t be the

pk × 1 vector containing the subset of forecasts belonging to cluster k, k = 1, 2, ..,K. By

ordering the clusters such that the first cluster contains models with the lowest historical

MSFE values, Aiolfi and Timmermann consider three separate strategies. The first simply

computes the average forecast across models in the cluster of previous best models:

ŷCPBt+h,t = (ι
0
p1
/p1)ŷ

1
t+h,t (43)

A second combination strategy identifies a small number of clusters, pools forecasts within

each cluster and then estimates optimal weights on these pooled predictions by least squares:

ŷCLSt+h,t =
KX
k=1

ω̂t+h,t,k

£
(ι0pk/pk)ŷ

k
t+h,t

¤
, (44)

where ω̂t+h,t,k are least-squares estimates of the optimal combination weights for the K

clusters. This strategy is likely to work well if the variation in forecasting performance within

each cluster is small relative to the variation in forecasting performance across clusters.

Finally, the third strategy pools forecasts within each cluster, estimates least squares

combination weights and then shrinks these towards equal weights in order to reduce the

effect of parameter estimation error

ŷCSWt+h,t =
KX
k=1

ŝt+h,t,k
£
(ι0pk/pk)ŷ

k
t+h,t

¤
,

10The two clustering methods will be similar if σFi varies significantly across factors and the factor exposure

vectors, bi, and error variances σ2εi are not too dissimilar across models. In this case forecast error variances

will tend to cluster around the factors that the various forecasting models are most exposed to.
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where ŝt+h,t,k are the shrinkage weights for the K clusters computed as ŝt+h,t,k = λω̂t+h,t,k +

(1 − λ) 1
K
, λ = max

©
0, 1− κ

¡
K

t−h−K
¢ª
. The higher is κ, the higher the shrinkage towards

equal weights.

4 Time-varying and Nonlinear combination Methods

So far our analysis has concentrated on forecast combination schemes that assumed constant

and linear combination weights. While this follows naturally in the case with MSE loss

and a time-invariant Gaussian distribution for the forecasts and realization, outside this

framework it is natural to consider more general combination schemes. Two such families of

special interest that generalize (6) are linear combinations with time-varying weights:

ŷct+h,t = ω0t+h,t +ω
0
t+h,tbyt+h,t, (45)

where ω0t+h,t, ω0t+h,t are adapted to Ft, and non-linear combinations with constant weights:

ŷct+h,t = C(byt+h,t,ω), (46)

where C(.) is some function that is nonlinear in the parameters, ω, in the vector of fore-

casts, byt+h,t, or in both. There is a close relationship between time-varying and nonlinear
combinations. For example, non-linearities in the true data generating process can lead

to time-varying covariances for the forecast errors and hence time-varying weights in the

combination of (misspecified) forecasts.

We next describe some of the approaches within these classes that have been proposed

in the literature.

4.1 Time-varying Weights

When the joint distribution of (yt+h ŷ0t+h,t)
0−or at least its first and second moments−vary

over time, it can be beneficial to let the combination weights change over time. Indeed,

Bates and Granger (1969) and Newbold and Granger (1974) suggested either assigning a

disproportionately large weight to the model that has performed best most recently or using
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an adaptive updating scheme that puts more emphasis on recent performance in assigning

the combination weights. Rather than explicitly modeling the structure of the time-variation

in the combination weights, Bates and Granger proposed five adaptive estimation schemes

based on exponential discounting or the use of rolling estimation windows.

The first combination scheme uses a rolling window of the most recent v observations

based on the forecasting models’ relative performance11

ω̂BG1
t,t−h,i =

¡Pt
τ=t−v+1 e

2
τ,τ−h,i

¢−1PN
j=1

¡Pt
τ=t−v+1 e

2
τ,τ−h,j

¢−1 . (47)

The shorter is v, the more weight is put on the models’ recent track record and the larger

the part of the historical data that is discarded. If v = t, an expanding window is used and

this becomes a special case of (36). Correlations between forecast errors are ignored by this

scheme.

The second rolling window scheme accounts for such correlations across forecast errors

but, again, only uses the most recent v observations for estimation:

ω̂BG2
t,t−h = Σ̂−1et,t−hι/(ι

0Σ̂−1et,t−hι), (48)

Σ̂et,t−h[i, j] = v−1
tX

τ=t−v+1
eτ,τ−h,ieτ,τ−h,j.

The third combination scheme uses adaptive updating captured by the parameter α ∈ (0; 1),

which tends to smooth the time-series evolution in the combination weights:

ω̂BG3
t,t−h,i = αω̂t−1,t−h−1,i + (1− α)

¡Pt
τ=t−v+1 e

2
τ,τ−h,i

¢−1PN
j=1

¡Pt
τ=t−v+1 e

2
τ,τ−h,j

¢−1 . (49)

The closer to unity is α, the smoother the weights will generally be.

The fourth and fifth combination methods are based on exponential discounting versions

of the first two methods and take the form

ω̂BG4
t,t−h,i =

¡Pt
τ=1 λ

τe2τ,τ−h,i
¢−1PN

j=1

¡Pt
τ=1 λ

τe2τ,τ−h,j
¢−1 , (50)

11While we write the equations for the weights for general h, adjustments can be made when h ≥ 2 which
induces serial correlation in the forecast errors.
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where λ ≥ 1 and higher values of λ correspond to putting more weight on recent data. This

scheme does not put a zero weight on any of the past forecast errors whereas the rolling

window methods entirely ignore observations more than v periods old. If λ = 1, there is no

discounting of past performance and the formula becomes a special case of (36). However, it

is common to use a discount factor such as λ = 0.95 or λ = 0.90, although the chosen value

will depend on factors such as data frequency, evidence of instability, forecast horizon etc.

Finally, the fifth scheme estimates the variance and covariance of the forecast errors using

exponential discounting:

ω̂BG5
t,t−h = Σ̂−1et,t−hι/(ι

0Σ̂−1et,t−hι), (51)

Σ̂et,t−h[i, j] =
tX

τ=1

λτeτ,τ−h,ieτ,τ−h,j.

Putting more weight on recent data means reducing the weight on past data and tends to

increase the variance of the parameter estimates. Hence it will typically lead to poorer perfor-

mance if the underlying data generating process is truly covariance stationary. Conversely,

the underlying time-variations have to be quite strong to justify not using an expanding

window. See Pesaran and Timmermann (2005) for further analysis of this point.

Diebold and Pauly (1987) embed these schemes in a general weighted least squares setup

that chooses combination weights to minimize the weighted average of forecast errors from

the combination. Let ect,t−h = yt−ω0ŷt,t−h be the forecast error from the combination. Then

one can minimize
TX

t=h+1

TX
τ=h+1

γt,τe
c
t,t−he

c
τ,τ−h, (52)

or equivalently, ec0Γec, where Γ is a (T − h)× (T − h) matrix with [t, τ ] element ωt,τ and ec

is a T − h× 1 vector of errors from the forecast combination. Assuming that Γ is diagonal,

equal-weights on all past observations correspond to γtt = 1 for all t, linearly declining

weights can be represented as γtt = t, and geometrically declining weights take the form

γtt = λT−t, 0 < λ ≤ 1. Finally, Diebold and Pauly introduce two new weighting schemes,

namely nonlinearly declining weights, γtt = tλ, λ ≥ 0 and the Box-Cox transform weights

γtt =

⎧⎨⎩ (tλ − 1)/λ if 0 < λ ≤ 1

ln(t) if λ = 0
.
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These weights can be either declining at an increasing rate or at a decreasing rate, depending

on the sign of λ−1. This is clearly an attractive feature and one that, e.g., the geometrically

declining weights do not have.

Diebold and Pauly also consider regression-based combinations with time-varying pa-

rameters. For example, if both the intercept and slope of the combination regression are

allowed to vary over time,

ŷt+h =
NX
i=0

(git + µit)ŷt+h,t,i,

where gi(t) + µit represent random variation in the combination weights. This approach

explicitly models the evolution in the combination weights as opposed to doing this indirectly

through the weighting of past and current forecast errors.

Instead of using adaptive schemes for updating the parameter estimates, an alternative

is to explicitly model time-variations in the combination weights. A class of combination

schemes considered by, e.g., Sessions and Chatterjee (1989), Zellner, Hong and Min (1991)

and Lesage and Magura (1992) lets the combination weights evolve smoothly according to a

time-varying parameter model:

yt+h = eω0t+h,tzt+h + εt+h, (53)

eωt+h,t = eωt,t−h + ηt+h,

where zt+h = (1 by0t+h,t)0 and eωt+h,t = (ω0t+h,t ω
0
t+h,t)

0. It is typically assumed that (for h = 1)

εt+h ∼ iid(0, σ2ε),ηt+h ∼ iid(0,Σ2
η) and Cov(εt+h,ηt+h) = 0.

Changes in the combination weights may instead occur more discretely, driven by some

switching indicator, Ie, c.f. Deutsch, Granger and Terasvirta (1994):

yt+h = Iet∈A(ω01 +ω
0
1byt+h,t) + (1− Iet∈A)(ω02 +ω

0
2byt+h,t) + εt+h. (54)

Here et = ιyt − byt,t−h is the vector of period-t forecast errors; Iet∈A is an indicator function
taking the value unity when et ∈ A and zero otherwise, for A some pre-defined set defining

the switching condition. This provides a broad class of time-varying combination schemes

as Iet∈A can depend on past forecast errors or other variables in a number of ways. For

example, Iet∈A could be unity if the forecast error is positive, zero otherwise.
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Engle, Granger and Kraft (1984) propose time-varying combining weights that follow a

bivariate ARCH scheme and are constrained to sum to unity. They assume that the distri-

bution of the two forecast errors et+h,t = (et+h,t,1 et+h,t,2)0 is bivariate Gaussian N(0,Σt+h,t)

where Σt+h,t is the conditional covariance matrix.

A flexible mixture model for time-variation in the combination weights has been proposed

by Elliott and Timmermann (2003). This approach is able to track both sudden and discrete

as well as more gradual shifts in the joint distribution of (yt+h ŷ0t+h,t). Suppose that the joint

distribution of (yt+h ŷ0t+h,t) is driven by an unobserved state variable, St+h, which assumes

one of ns possible values, i.e. St+h ∈ (1, ..., ns). Conditional on a given realization of the

underlying state, St+h = st+h, the joint distribution of yt+h and ŷt+h is assumed to be

Gaussian ⎛⎝ yt+h

ŷt+h,t

⎞⎠¯̄̄̄¯̄
st+h

∼ N

⎛⎝⎛⎝ µyst+h

µyst+h

⎞⎠ ,

⎛⎝ σ2yst+h σ0yyst+h

σyyst+h Σyyst+h

⎞⎠⎞⎠ . (55)

This is similar to (7) but now conditional on St+h, which is important. This model generalizes

(28) to allow for an arbitrary number of states. State transitions are assumed to be driven

by a first-order Markov chain P = Pr(St+h = st+h|St = st)

P =

⎛⎜⎜⎜⎜⎜⎜⎝
p11 p12 · · · p1ns

p21 p22 · · · ...
...

... · · · pns−1ns

pns1 · · · pnsns−1 pnsns

⎞⎟⎟⎟⎟⎟⎟⎠ . (56)

Conditional on St+h = st+h, the expectation of yt+h is linear in the prediction signals, ŷt+h,t,

and thus takes the form of state-dependent intercept and combination weights:

E[yt+h|ŷt+h,t, st+h] = µyst+h + σ
0
yyst+h

Σ−1yyst+h(byt+h,t − µyst+h). (57)

Accounting for the fact that the underlying state is unobservable, the conditionally expected

loss given current information, Ft, and state probabilities, πst+h,t, becomes:

E
£
e2t+h|πst+h,t,Ft

¤
=

nsX
st+h=1

πst+h,t

n
µ2est+h + σ2est+h

o
, (58)
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where πst+h,t = Pr(St+h = st+h|Ft) is the probability of being in state st+h in period t + h

conditional on current information, Ft. Assuming a linear combination conditional on Ft,

πst+h,t the optimal combination weights, ω
∗
0t+h,t,ω

∗
t+h,t become (c.f. Elliott and Timmermann

(2003))

ω∗0t+h,t =
nsX

st+h=1

πst+h,tµyst+h − (
nsX

st+h=1

πst+h,tµ
0
yst+h

)ωth ≡ µ̄yt + µ̄
0
ytωth,

ω∗t+h,t =

⎛⎝ nsX
st+h=1

πst+h,t
³
µyst+hµ

0
yst+h

+Σyst+h

´
− µ̄ytµ̄0yt

⎞⎠−1

×

⎛⎝ nsX
st+h=1

πst+h,t(µyst+hµyst+h + σyyst+h)− µ̄ytµ̄yt

⎞⎠ , (59)

where µ̄yt =
Pns

st+h=1
πst+h,tµyst+h and µ̄yt =

Pns
st+h=1

πst+h,tµyst+h. The standard weights in

(8) can readily be obtained by setting ns = 1.

It follows from (59) that the (conditionally) optimal combination weights will vary as the

state probabilities vary over time as a function of the arrival of new information provided

that P is of rank greater than one.

4.2 Nonlinear Combination Schemes

Two types of non-linearities can be considered in forecast combinations. First, non-linear

functions of the forecasts can be used in the combination which is nevertheless linear in the

unknown parameters:

ŷct+h,t = ω0 +ω
0C(byt+h,t). (60)

Here C(byt+h,t) is a function of the underlying forecasts that typically includes a lead term
that is linear in byt+h,t in addition to higher order terms similar to a Volterra or Taylor series
expansion. The nonlinearity in (60) only enters through the shape of the transformation

C(.) so the unknown parameters can readily be estimated by OLS although the small-sample

properties of such estimates could be an issue due to possible outliers. A second and more

general combination method considers non-linearities in the combination parameters, i.e.

ŷct+h,t = C(byt+h,t,ω). (61)
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There does not appear to be much work in this area, possibly due to the fact that estimation

errors already appear to be large in linear combination schemes and can be expected to

be even larger for non-linear combinations whose parameters are generally less robust and

more sensitive to outliers than those of the linear schemes. Techniques from the Handbook

chapter by White (2005) could be readily used in this context, however.

One paper that does estimate nonlinear combination weights is the study by Donaldson

and Kamstra (1996). This uses artificial neural networks to combine volatility forecasts from

a range of alternative models. Their combination scheme takes the form

ŷct+h,t = β0 +
NX
j=1

βj ŷt+h,t,j +

pX
i=1

δig(zt+h,tγi), (62)

g(zt+h,tγi) = (1 + exp(−(γ0,i +
NX
j=1

γ1,jzt+h,t,j)))
−1

zt+h,t,j = (ŷt+h,t,j − ȳt+h,t)/σ̂yt+h,t,

p ∈ {0, 1, 2, 3}.

Here ȳt+h,t is the sample estimate of the mean of y across the forecasting models while σ̂yt+h,t

is the sample estimate of the standard deviation using data up to time t. This network uses

logistic nodes. The linear model is nested as a special case when p = 0 so no nonlinear

terms are included. In an out-of-sample forecasting experiment for volatility in daily stock

returns, Donaldson and Kamstra find evidence that the neural net combination applied

to two underlying forecasts (a moving average variance model and a GARCH(1,1) model)

outperforms traditional combination methods.

5 Shrinkage Methods

In cases where the number of forecasts, N , is large relative to the sample size, T , the sample

covariance matrix underlying standard combinations is subject to considerable estimation

uncertainty. Shrinkage methods aim to trade off bias in the combination weights against

reduced parameter estimation error in estimates of the combination weights. Intuition for

how shrinkage works is well summarized by Ledoit and Wolf (2004 page 2): “The crux
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of the method is that those estimated coefficients in the sample covariance matrix that

are extremely high tend to contain a lot of positive error and therefore need to be pulled

downwards to compensate for that. Similarly, we compensate for the negative error that

tends to be embedded inside extremely low estimated coefficients by pulling them upwards.”

This problem can partially be resolved by imposing more structure on the estimator in a

way that reduces estimation error although the key question remains how much and which

structure to impose. Shrinkage methods let the forecast combination weights depend on the

sample size relative to the number of cross-sectional models to be combined.

Diebold and Pauly (1990) propose to shrink towards equal-weights. Consider the stan-

dard linear regression model underlying most forecast combinations and for simplicity drop

the time and horizon subscripts:

y = ŷω + ε, ε ∼N(0,σ2I), (63)

where y and ε are T × 1 vectors, ŷ is the T × N matrix of forecasts and ω is the N × 1

vector of combination weights. The standard normal-gamma conjugate prior σ2 ∼ IG(s20, v0),

ω|σ ∼ N(ω0,M) implies that

P0(ω, σ) ∝ σ−N−v0−1 exp(
−(v0s20 + (ω −ω0)0M(ω −ω0))

2σ2
) (64)

Under normality of ε the likelihood function for the data is

L(ω, σ|y, ŷ) ∝ σ−T exp(
−(y− ŷω)0(y− ŷω)

2σ2
). (65)

These results can be combined to give the marginal posterior for ω with mean

ω̄ = (M+ ŷ0ŷ)−1(Mω0 + ŷ
0ŷω̂), (66)

where ω̂ = (ŷ0ŷ)−1ŷ0ŷ is the least squares estimate of ω. Using a prior for M that is

proportional to ŷ0ŷ,M = gŷ0ŷ, we get

ω̄ = (gŷ0ŷ+ ŷ0ŷ)−1(gŷ0ŷω0 + ŷ
0ŷω̂),

which can be used to obtain

ω̄ = ω0 +
ω̂ −ω0
1 + g

. (67)
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Clearly, the larger the value of g, the stronger the shrinkage towards the mean of the prior,

ω0, whereas small values of g suggest putting more weight on the data.

Alternatively, empirical Bayes methods can be used to estimate g. Suppose the prior for

ω conditional on σ is Gaussian N(ω0, τ
2A−1). Then the posterior for ω is also Gaussian,

N(ω̄, τ−2A + σ−2ŷ0ŷ) and σ2 and τ 2 can be replaced by the estimates (c.f. Diebold and

Pauly (1990))

σ̂2 =
(y− ŷω̂)0(y− ŷω̂)

T

τ̂ 2 =
(ω̂ −ω0)0(ω̂ −ω0)

tr(ŷ0ŷ)−1
− σ̂2.

This gives rise to an empirical Bayes estimator of ω whose posterior mean is

ω̄ = ω0 +

µ
τ̂ 2

σ̂2 + τ̂ 2

¶
(ω̂ −ω0). (68)

The empirical Bayes combination shrinks ω̂ towards ω0 and amounts to setting g = σ̂2/τ̂ 2 in

(67). Notice that if σ̂2/τ̂ 2 → 0, the OLS estimator is obtained while if σ̂2/τ̂ 2 →∞, the prior

estimate ω0 is obtained as a special case. Diebold and Pauly argue that the combination

weights should be shrunk towards the equal-weighted (simple) average so the combination

procedure gives a convex combination of the least-squares and equal weights.

Stock and Watson (2004) also propose shrinkage towards the arithmetic average of fore-

casts. Let ω̂T,T−h,i be the least-squares estimator of the weight on the ith model in the

forecast combination based on data up to period T . The combination weights considered by

Stock and Watson take the form (assuming T > h+N + 1)

ωT,T−h,i = ψω̂T,T−h,i + (1− ψ)(1/N),

ψ = max(0, 1− κN/(T − h−N − 1)),

where κ regulates the strength of the shrinkage. Stock and Watson consider values κ =

1/4, 1/2 or 1. As the sample size, T , rises relative to N , the least squares estimate gets a

larger weight. Indeed, if T grows at a faster rate than N , the least squares weight will, in

the limit, get a weight of unity.
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5.1 Shrinkage and factor structure

In a portfolio application Ledoit and Wolfe (2003) propose to shrink the weights towards

a point implied by a single factor structure common from finance.12 Suppose that the

individual forecast errors are affected by a single common factor, fet

eit = αi + βifet + εit. (69)

where the idiosyncratic residuals, εit, are assumed to be orthogonal across forecasting models

and uncorrelated with fet. This single factor model has a long tradition in finance but is also

a natural starting point for forecasting purposes since forecast errors are generally strongly

positively correlated. Letting σ2fe be the variance of fet, the covariance matrix of the forecast

errors becomes

Σef = σ2feββ
0 +Dε, (70)

where β = (β1 · · ·βN)0 is the vector of factor sensitivities, whileDε is a diagonal matrix with

the individual values of V ar(εit) on the diagonal. Estimation of Σef requires determining

12The problem of forming mean-variance efficient portfolios in finance is mathematically equivalent to that

of combining forecasts, c.f. Dunis, Timmermann and Moody (2001). In finance, the standard optimization

problem minimizes the portfolio variance ω0Σω subject to a given portfolio return, ω0µ = µ0, where µ is a

vector of mean returns while Σ is the covariance matrix of asset returns. Imposing also the constraint that

the portfolio weights sum to unity, we have

min
ω

ω0Σω

s.t. ω0ι = 1,

ω0µ = µ0 .

This problem has the solution

ω∗ = Σ−1(µ ι)
£
(µ ι)

0
Σ−1(µ ι)

¤−1⎛⎝ µ0

1

⎞⎠ .

In the forecast combination problem the constraint ω0ι = 1 is generally interpreted as guaranteeing an

unbiased combined forecast−assuming of course that the individual forecasts are also unbiased. The only
difference to the optimal solution from the forecast combination problem is that a minimum variance portfolio

is derived for each separate value of the mean portfolio return, µ0.
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only 2N + 1 parameters. Consistent estimates of these parameters are easily obtained by

estimating (69) by OLS, equation by equation, to get

Σ̂ef = σ̂2feβ̂β̂
0
+ D̂ε.

Typically this covariance matrix is biased due to the assumption that Dε is diagonal. For

example, there may be more than a single common factor in the forecast errors and some

forecasts may omit the same relevant variable in which case blocks of forecast errors will be

correlated. Though biased, the single factor covariance matrix is typically surrounded by

considerably smaller estimation errors than the unconstrained matrix, E[ee0], which can be

estimated by

Σ̂e =
1

T − h

TX
τ=h

eτ,τ−he
0
τ,τ−h,

where eτ,τ−h is an N × 1 matrix of forecast errors. This estimator requires estimating

N(N + 1)/2 parameters. Using Σ̂ef as the shrinkage point, Ledoit and Wolf (2003) propose

minimizing the following quadratic loss as a function of the shrinkage parameter, α,

L(α) = ||αΣ̂ef + (1− α)Σ̂e −Σe||2,

where ||.||2 is the Frobenius norm, i.e. ||Z||2 = trace(Z2), Σ̂e=(1/T )e(I− ιι0/T )e0 is the

sample covariance matrix and Σe is the true matrix of squared forecast errors, E[e0e], where

e is a T ×N matrix of forecast errors . Letting f̂ij be the (i, j) entry of Σ̂ef , σ̂ij the (i, j)

element of Σ̂e and φij the (i, j) element of the single factor covariance matrix, Σef , while σij

is the (i, j) element of Σe, they demonstrate that the optimal shrinkage takes the form

α∗ =
1

T

π − ρ

γ
+O(

1

T 2
),

where

π =
NX
i=1

NX
j=1

AsyV ar(
√
Tσ̂ij),

ρ =
NX
i=1

NX
j=1

AsyCov(
√
T f̂ij,

√
T σ̂ij),

γ =
NX
i=1

NX
j=1

(φij − σij)
2.
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Hence, π measures the (scaled) sum of asymptotic variances of the sample covariance matrix

(Σ̂e), p measures the (scaled) sum of asymptotic covariances of the single-factor covariance

matrix (Σ̂ef), while γ measures the degree of misspecification (bias) in the single factor

model. Ledoit and Wolf propose consistent estimators π̂, ρ̂ and γ̂ under the assumption of

IID forecast errors.13

5.2 Constraints on Combination Weights

Shrinkage bears an interesting relationship to portfolio weight constraints in finance. It

is commonplace to consider minimization of portfolio variance subject to a set of equality

and inequality constraints on the portfolio weights. Portfolio weights are often constrained

to be non-negative (due to no short selling) and not to exceed certain upper bounds (due

to limits on ownership in individual stocks). Reflecting this, let Σ̂ be an estimate of the

covariance matrix for some cross-section of asset returns with row i, column j element Σ̂[i, j]

and consider the optimization program

ω∗ = argmin
ω

1

2
ω0Σ̂ω (71)

s.t. ω0ι = 1

ωi ≥ 0, i = 1, ..., N

ωi ≤ ω̄, i = 1, ..., N.

This gives a set of Kuhn-Tucker conditions:X
j

Σ̂[i, j]ωj − λi + δi = λ0 ≥ 0 i = 1, ..., N

λi ≥ 0 and λi = 0 if ωi > 0

δi ≥ 0 and δi = 0 if ωi < ω̄

Lagrange multipliers for the lower and upper bounds are collected in the vectors λ =

(λ1, ..., λN)
0 and δ = (δ1, ..., δN)0; λ0 is the Lagrange multiplier for the constraint that the

weights sum to one.
13It is worth pointing out that the assumption that e is IID is unlikely to hold for forecast errors which

could share common dynamics in first, second or higher order moments or even be serially correlated, c.f.

Diebold (1988).
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Constraints on combination weights effectively have two effects. First, they shrink the

largest elements of the covariance matrix towards zero. This reduces the effects of estimation

error that can be expected to be strongest for assets with extreme weights. The second effect

is that it may introduce specification errors to the extent that the true population values of

the optimal weights actually lie outside the assumed interval.

Jagannathan and Ma (2003) show the following result. Let

Σ̃ = Σ̂+ (δι0 + ιδ0)− (λι0 + ιλ0). (72)

Then Σ̃ is symmetric and positive semi-definite. Constructing a solution to the inequality

constrained problem (71) is shown to be equivalent to finding the optimal weights for the

unconstrained quadratic form based on the modified covariance matrix in (72) Σ̃ = Σ̂ +

(δι0 + ιδ0)− (λι0 + ιλ0).

Furthermore, it turns out that Σ̃ can be interpreted as a shrinkage version of Σ̂. To

see this, consider the weights that are affected by the lower bound so Σ̃ = Σ̂− (λι0 + ιλ0).

When the constraint for the lower bound is binding (so a combination weight would have

been negative), the covariances of a particular forecast error with all other errors are reduced

by the strictly positive Lagrange multipliers and its variance is shrunk. Imposing the non-

negativity constraints shrinks the largest covariance estimates that would have resulted in

negative weights. Since the largest estimates of the covariance are more likely to be the

result of estimation error, such shrinkage can have the effect of reducing estimation error

and have the potential to improve out-of-sample performance of the combination.

In the case of the upper bounds, those forecasts whose unconstrained weights would

have exceeded ω̄ are also the ones for which the variance and covariance estimates tend

to be smallest. These forecasts have strictly positive Lagrange multipliers on the upper

bound constraint, meaning that their forecast error variance will be increased by 2δi while

the covariances in the modified covariance matrix Σ̃ will be increased by δi+ δj. Again this

corresponds to shrinkage towards the cross-sectional average of the variances and covariances.
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6 Combination of Interval and Probability Distribu-

tion Forecasts

So far we have focussed on combining point forecasts. This, of course, reflects the fact that

the vast majority of academic studies on forecasting only report point forecasts. However,

there has been a growing interest in studying interval and probability distribution forecasts

and an emerging literature in economics is considering the scope for using combination

methods for such forecasts. This is preceded by the use of combined probability forecasting

in areas such as meteorology, c.f. Sanders (1963). Genest and Zidek (1986) present a broad

survey of various techniques in this area.

6.1 The Combination Decision

As in the case of combinations of point forecasts it is natural to ask whether the best

strategy is to use only a single probability forecast or a combination of these. This is

related to the concept of forecast encompassing which generalizes from point to density

forecasts as follows. Suppose we are considering combining N distribution forecasts f1, ..., fN

whose joint distribution with y is P (y, f1, f2, ...., fN). Factoring this into the product of the

conditional distribution of y given f1, ..., fN , P (y|f1, ..., fN), and the marginal distribution

of the forecasts, P (f1, ..., fN), we have

P (y, f1, f2, ..., fN) = P (y|f1, ..., fN)P (f1, ..., fN). (73)

A probability forecast that does not provide information about y given all the other proba-

bility density forecasts is referred to as extraneous by Clemen, Murphy and Winkler (1995).

If the ith forecast is extraneous we must have

P (y|f1, f2, ..., fN) = P (y|f1, f2, .., fi−1, fi+1, ..., fN). (74)

If (74) holds, probability forecast fi does not contain any information that is useful for

forecasting y given the other N − 1 probability forecasts. Only if forecast i does not satisfy

(74) does it follow that this model is not encompassed by the other models. Interestingly,
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adding more forecasting models (i.e. increasingN) can lead a previously extraneous model to

become non-extraneous if it contains information about the relationship between the existing

N − 1 methods and the new forecasts.

For pairwise comparison of probability forecasts, Clemen et al (1995) define the concept

of sufficiency. This concept is important because if forecast 1 is sufficient for forecast 2, then

its forecasts will be of greater value to all users than forecast 2. Conversely, if neither model

is sufficient for the other we would expect some forecast users to prefer model 1 while others

prefer model 2. To illustrate this concept, consider two probability forecasts, f1 = P1(x = 1)

and f2 = P2(x = 1) of some event, X, where x = 1 if the event occurs while it is zero

otherwise. Also let v1(f) = P (f1 = f) and v2(g) = P (f2 = g), where f, g ∈ G, and G is the

set of permissible probabilities. Forecast 1 is then said to be sufficient for forecast 2 if there

exists a stochastic transformation ζ(g|f) such that for all g ∈ G,X
f

ζ(g|f)v1(f) = v2(g),X
f

ζ(g|f)fv1(f) = gv2(g).

The function ζ(g|f) is said to be a stochastic transformation provided that it lies between

zero and one and integrates to unity. It represents an additional randomization that has the

effect of introducing noise into the first forecast.

6.2 Combinations of Probability Density Forecasts

Combinations of probability density or distribution forecasts impose new requirements be-

yond those we saw for combinations of point forecasts, namely that the combination must be

convex with weights confined to the zero-one interval so that the probability forecast never

becomes negative and always sums to one.

This still leaves open a wide set of possible combination schemes. An obvious way

to combine a collection of probability forecasts {Ft+h,t,1, ..., Ft+h,t,N} is through the convex

combination (“linear opinion pool”):

F̄ c =
NX
i=1

ωt+h,t,iF,t+h,t,i, (75)
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with 0 ≤ ωt+h,t,i ≤ 1 (i = 1, ..., N) and
PN

i=1 ωt+h,t,i = 1 to ensure that the combined

probability forecast is everywhere non-negative and integrates to one. The generalized linear

opinion pool adds an extra probability forecast, Ft+h,t,0, and takes the form

F̄ c =
NX
i=0

ωt+h,t,iFt+h,t,i. (76)

Under this scheme the weights are allowed to be negative ω0, ω1, ..., ωn ∈ [−1, 1] although

they still are restricted to sum to unity:
PN

i=0 ωt+h,t,i = 1.Ft+h,t,0 can be shown to exist under

conditions discussed by Genest and Zidek (1986).

Alternatively, one can adopt a logarithmic combination of densities

f̄ l =
NY
i=1

f
ωt+h,t,i
t+h,t,i /

Z NY
i=1

f
ωt+h,t,i
t+h,t,i dµ, (77)

where {ωt+h,t,1, ..., ωt+h,t,N} are weights chosen such that the integral in the denominator is

finite and µ is the underlying probability measure. This combination is less dispersed than

the linear combination and is also unimodal, c.f. Genest and Zidek (1986).

6.3 Bayesian Methods

Bayesian approaches have been widely used to construct combinations of probability fore-

casts. For example, Min and Zellner (1993) propose combinations based on posterior odds

ratios. Let p1 and p2 be the posterior probabilities of two models (a fixed parameter and

a time-varying parameter model in their application) while k = p1/p2 is the posterior odds

ratio of the two models. Assuming that the two models, M1 and M2, are exhaustive the

proposed combination scheme has a conditional mean of

E[y] = p1E[y|M1] + (1− p1)E[y|M2]

=
k

1 + k
E[y|M1] +

1

1 + k
E[y|M2]. (78)

Palm and Zellner (1992) propose a combination method that accounts for the full cor-

relation structure between the forecast errors. They model the forecast errors from the

individual models as follows (ignoring the subscript tracking the forecast horizon)

yt+1 − ŷit+1,t = θi + εit+1 + ηt+1, (79)
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where θi is the bias in the ith model’s forecast−reflecting perhaps the forecaster’s asymmet-

ric loss, c.f. Zellner (1986)− εit+1 is an idiosyncratic forecast error and ηt+1 is a common

component in the forecast errors reflecting an unpredictable component of the outcome vari-

able. It is assumed that both εit+1 ∼ N(0, σ2i ) and ηt+1 ∼ N(0, σ2η) are serially uncorrelated

(as well as mutually uncorrelated) Gaussian variables with zero mean.

For the case with zero bias (θi = 0), Winkler (1981) shows that when εit+1 + ηt+1 (i =

1, ..., N) has known covariance matrix, Σ0, the predictive density function of yt+1 given an

N-vector of forecasts ŷt+1,t = (ŷt+1,t,1, ..., ŷt+1,t,N)0 is Gaussian with mean ι0Σ−10 ŷt+1,t/ι
0Σ0ι

and variance ι0Σ−10 ι. When the covariance matrix of the N time-varying parts of the forecast

errors εit+1 + ηt+1, Σ, is unknown but has an inverted Wishart prior IW (Σ|Σ0, δ0, N) with

δ0 ≥ N , the predictive distribution of yT+1 given FT = {y1, ..., yT , ŷ2,1, ..., ŷT,T−1, ŷT+1,T )

is a univariate student-t with degrees of freedom parameter δ0 + N − 1, mean m∗ =

ι0Σ−10 ŷT+1,T/ι
0Σ−10 ι and variance (δ0 +N − 1)s∗2/(δ0 + N − 3), where s∗2 = (δ0 + (m∗ι −

ŷT+1,T )
0Σ−10 (m

∗ι− ŷT+1,T ))/(δ0 +N − 1)ι0Σ−10 ι.

Palm and Zellner (1992) extend these results to allow for a non-zero bias. Given a set of

N forecasts ŷt+1,t over T periods they express the forecast errors yt − ŷt,t−1,i = θi + εit + ηt

as a T ×N multivariate regression model:

Y = ιθ +U.

Suppose that the structure of the forecast errors (79) is reflected in a Wishart prior for Σ−1

with v degrees of freedom and covariance matrix Σ0 = Σε0+σ2η0ιι
0 (with known parameters

v,Σε0, σ
2
η0):

P (Σ−1) ∝ |Σ−1|(v−N−1)/2|Σ−10 |−v/2 exp(−
1

2
tr(Σ0Σ

−1)).

Assuming a sample of T observations and a likelihood function

L(θ,Σ−1|FT ) ∝ |Σ−1|−T/2 exp(−
1

2
tr(SΣ−1)− 1

2
tr((θ − θ̂)ι0ι(θ − θ̂)0Σ−1)),

where θ̂ = (ι
0
ι)−1ι0Y and S =(Y − ιθ̂0)0(Y − ιθ̂0), Palm and Zellner derives the predictive

distribution function of yT+1 given FT :

P (yT+1|FT ) ∝
£
1 + (yT+1 − µ̄)2/(T − 1)s∗∗2

¤−(T+v)/2
,
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where µ̄ = ι0S̄−1µ̂/ι0S̄−1ι, s∗∗2 =
£
T + 1 + T (µ̄ι− µ̂)0S̄−1(µ̄ι− µ̂)

¤
/(T (T−1)ι0S̄−1ι), µ̂ = ŷT+1−

θ̂ and S̄ = S+Σ0. This approach provides a complete solution to the forecast combination

problem that accounts for the joint distribution of forecast errors from the individual models.

6.3.1 Bayesian Model Averaging

Bayesian Model Averaging methods have been proposed by, inter alia, Leamer (1978), Rafter

et al (1997) and Hoeting et al. (1999) and are increasingly used in empirical studies, see e.g.

Jackson and Karlsson (2004). Under this approach, the predictive density can be computed

by averaging over a set of models, i = 1, ..., N , each characterized by parameters θi :

f (yt+h |Ft ) =
NX
i=1

Pr (Mi |Ft ) fi (yt+h,θi |Ft ) , (80)

where Pr (Mi |Ft ) is the posterior probability of model Mi obtained from the model priors

Pr (Mi), the priors for the unknown parameters, Pr (θi |Mi ), and the likelihood functions

of the models under consideration. fi (yt+h,θi |Ft ) is the predictive density of yt+h and θi

under the ith model, given information at time t, Ft. Note that unlike the combination

weights used for point forecasts such as (12), these weights do not account for correlations

between forecasts. However, the approach is quite general and does not require the use of

conjugate families of distributions. More details are provided in the handbook chapter by

Geweke and Whiteman (2005).

6.4 Combinations of Quantile Forecasts

Combinations of quantile forecasts do not pose any new issues except for the fact that

the associated loss function used to combine quantiles is typically no longer continuous and

differentiable. Instead predictions of the αth quantile can be related to the ‘tick’ loss function

Lα(et+h,t) = (α− 1et+h,t<0)et+h,t,

where 1et+h,t<0 is an indicator function taking a value of unity if et+h,t < 0, and is otherwise

zero, c.f. Giacomini and Komunjer (2005). Given a set of quantile forecasts qt+h,t,1, ...., qt+h,t,N ,
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quantile forecast combinations can then be based on formulas such as

qct+h,t =
NX
i=1

ωiqt+h,t,i,

possibly subject to constraints such as
PN

i=1 ωi = 1.

More caution should be exercised when forming combinations of interval forecasts. Sup-

pose that we have N interval forecasts each taking the form of a lower and an upper limit

{lt+h,t,i;ut+h,t,i}. While weighted averages {l̄ct+h,t,i; ūct+h,t,i}

l̄ct+h,t,i =
NX
i=1

ωl
t+h,t,ilt+h,t,i,

ūct+h,t,i =
NX
i=1

ωu
t+h,t,iut+h,t,i, (81)

may seem natural, they are not guaranteed to provide correct coverage rates. To see this,

consider the following two 97% confidence intervals for a normal mean

[ȳ − 2.58σ
T
, ȳ + 1.96

σ

T
],

[ȳ − 1.96σ
T
, ȳ + 2.58

σ

T
].

The average of these confidence intervals, [ȳ − 2.27 σ
T
, ȳ + 2.27 σ

T
] has a coverage of 97.7%.

Combining confidence intervals may thus change the coverage rate.14 The problem here is

that the underlying end-points for the two forecasts (i.e. ȳ − 2.58 σ
T
and ȳ − 1.96 σ

T
) are

not estimates of the same quantiles. While it is natural to combine estimates of the same

α−quantile, it is less obvious that combination of forecast intervals makes much sense unless

one can be assured that the end-points are lined up and are estimates of the same quantiles.

7 Empirical Evidence

The empirical literature on forecast combinations is voluminous and includes work in several

areas such as management science, economics, operations research, meteorology, psychology

and finance. The work in economics dates back to Reid (1968) and Bates and Granger

14I am grateful to Mark Watson for suggesting this example.
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(1969). Although details and results vary across studies, it is possible to extract some broad

conclusions frommuch of this work. Such conclusions come with a stronger than usual caveat

emptor since for each point it is possible to construct counter examples. This is necessarily

the case since findings depend on the number of models, N , (as well as their type), the

sample size, T , the extent of instability in the underlying data set and the structure of the

covariance matrix of the forecast errors (e.g., diagonal or with similar correlations).

Nevertheless, empirical findings in the literature on forecast combinations broadly suggest

that (i) simple combination schemes are difficult to beat. This is often explained by the im-

portance of parameter estimation error in the combination weights. Consequently, methods

aimed at reducing such errors (such as shrinkage or combination methods that ignore corre-

lations between forecasts) tend to perform well; (ii) forecasts based exclusively on the model

with the best in-sample performance often leads to poor out-of-sample forecasting perfor-

mance; (iii) trimming of the worst models and clustering of models with similar forecasting

performance prior to combination can yield considerable improvements in forecasting perfor-

mance, especially in situations involving large numbers of forecasts; (iv) shrinkage to simple

forecast combination weights often improves performance; and (v) some time-variation or

adaptive adjustment in the combination weights (or perhaps in the underlying models being

combined) can often improve forecasting performance. In the following we discuss each of

these points in more detail. The Section finishes with a brief empirical application to a large

macroeconomic data set from the G7 economies.

7.1 Simple Combination Schemes are hard to beat

It has often been found that simple combinations−that is, combinations that do not require

estimating many parameters such as arithmetic averages or weights based on the inverse

mean squared forecast error−do better than more sophisticated rules relying on estimating

optimal weights that depend on the full variance-covariance matrix of forecast errors, c.f.

Bunn (1985), Clemen and Winkler (1986), Dunis, Laws and Chauvin (2001), Figlewski and

Urich (1983) and Makridakis and Winkler (1983).

Palm and Zellner (1992, p. 699) concisely summarize the advantages of adopting a simple
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average forecast:

“1. Its weights are known and do not have to be estimated, an important advantage if

there is little evidence on the performance of individual forecasts or if the parameters of the

model generating the forecasts are time-varying;

2. In many situations a simple average of forecasts will achieve a substantial reduction

in variance and bias through averaging out individual bias;

3. It will often dominate, in terms of MSE, forecasts based on optimal weighting if proper

account is taken of the effect of sampling errors and model uncertainty on the estimates of

the weights.”

Despite the impressive empirical track record of equal-weighted forecast combinations

we stress that the theoretical justification for this method critically depends on the ratio of

forecast error variances not being too far away from unity and also depends on the correlation

between forecast errors not varying too much across pairs of models. Consistent with this,

Gupta and Wilton (1987) find that the performance of equal weighted combinations depends

strongly on the relative size of the variance of the forecast errors associated with different

forecasting methods. When these are similar, equal weights perform well, while when larger

differences are observed, differential weighting of forecasts is generally required.

Another reason for the good average performance of equal-weighted forecast combina-

tions is related to model instability. If model instability is sufficiently important to render

precise estimation of combination weights nearly impossible, equal-weighting of forecasts

may become an attractive alternative as pointed out by Figlewski and Urich (1983), Clemen

and Winkler (1986), Kang (1986), Diebold and Pauly (1987) and Palm and Zellner (1992).

Results regarding the performance of equal-weighted forecast combinations may be sen-

sitive to the loss function underlying the problem. Elliott and Timmermann (2003) find

in an empirical application that the optimal weights in a combination of inflation survey

forecasts and forecasts from a simple autoregressive model strongly depend on the degree of

asymmetry in the loss function. In the absence of loss asymmetry, the autoregressive forecast

does not add much information. However, under asymmetric loss (in either direction), both

sets of forecasts appear to contain information and have non-zero weights in the combined
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forecast. Their application confirms the frequent finding that equal-weights outperform esti-

mated optimal weights under MSE loss. However, it also shows very clearly that this result

can be overturned under asymmetric loss where use of estimated optimal weights may lead

to smaller average losses out-of-sample.

7.2 Choosing the forecast with the best track record is often a

bad idea

Many studies have found that combination dominates the best individual forecast in out-

of-sample forecasting experiments. For example, Makridakis et al (1982) report that a

simple average of six forecasting methods performed better than the underlying individual

forecasts. In simulation experiments Gupta andWilton (1987) also find combination superior

to the single best forecast. Makridakis and Winkler (1983) report large gains from simply

averaging forecasts from individual models over the performance of the best model. Hendry

and Clements (2002) explain the better performance of combination methods over the best

individual model by misspecification of the models caused by deterministic shifts in the

underlying data generating process. Naturally, the models cannot be misspecified in the

same way with regard to this source of change, or else diversification gains would be zero.

In one of the most comprehensive studies to date, Stock and Watson (2001) consider

combinations of a range of linear and nonlinear models fitted to a very large set of US

macroeconomic variables. They find strong evidence in support of using forecast combination

methods, particularly the average or median forecast and the forecasts weighted by their

inverse MSE. The overall dominance of the combination forecasts holds at the one, six and

twelve month horizons. Furthermore, the best combination methods combine forecasts across

many different time-series models.

Similarly, in a time-series simulation experiment, Winkler and Makridakis (1983) find

that a weighted average with weights inversely proportional to the sum of squared errors

or a weighted average with weights that depend on the exponentially discounted sum of

squared errors perform better than the best individual forecasting model, equal-weighting

or methods that require estimation of the full covariance matrix for the forecast errors.
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Aiolfi and Timmermann (2004) find evidence of persistence in the out-of-sample perfor-

mance of linear and non-linear forecasting models fitted to a large set of macroeconomic

time-series in the G7 countries. Models that were in the top and bottom quartiles when

ranked by their historical forecasting performance have a higher than average chance of re-

maining in the top and bottom quartiles, respectively, in the out-of-sample period. They

also find systematic evidence of ‘crossings’, where the previous best models become the worst

models in the future or vice versa, particularly among the linear forecasting models. They

find that many forecast combinations produce lower out-of-sample MSE than a strategy of se-

lecting the previous best forecasting model irrespective of the length of the backward-looking

window used to measure past forecasting performance.

7.3 Trimming of the worst models is often required

Trimming of forecasts can occur at two levels. First, it can be adopted as a form of outlier

reduction rule (c.f. Chan, Stock and Watson (1999)) at the initial stage that produces

forecasts from the individual models. Second it can be used in the combination stage where

models deemed to be too poor may be discarded. Since the first form of trimming has

more to do with specification of the individual models underlying the forecast combination,

we concentrate on the latter form of trimming which has been used successfully in many

studies. Most obviously, when many forecasts get a weight close to zero, improvements due

to reduced parameter estimation errors can be gained by dropping such models.

Winkler and Makridakis (1983) find that including very poor models in an equal-weighted

combination can substantially worsen forecasting performance. Stock and Watson (2003)

also find that the simplest forecast combination methods such as trimmed equal weights

and slowly moving weights tend to perform well and that such combinations do better than

forecasts from a dynamic factor model.

In their thick modeling approach, Granger and Jeon (2004) recommend trimming five or

ten percent of the worst models, although the extent of the trimming will depend on the

application at hand.

More aggressive trimming has also been proposed. In a forecasting experiment involving
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the prediction of stock returns by means of a large set of forecasting models, Aiolfi and

Favero (2003) investigate the performance of a large set of trimming schemes. Their findings

indicate that the best performance is obtained when the top 20% of the forecasting models is

combined in the forecast so that 80% of the models (ranked by their R2-value) are trimmed.

7.4 Shrinkage often improves performance

By and large shrinkage methods have performed quite well in empirical studies. In an

empirical exercise containing four real-time forecasts of nominal and real GNP, Diebold

and Pauly (1990) report that shrinkage weights systematically improve upon the forecasting

performance over methods that select a single forecast or use least squares estimates of the

combination weights. They direct the shrinkage towards a prior reflecting equal weights and

find that the optimal degree of shrinkage tends to be large. Similarly, Stock and Watson

(2003) find that shrinkage methods perform best when the degree of shrinkage (towards

equal weights) is quite strong.

Aiolfi and Timmermann (2004) explore persistence in the performance of forecasting

models by proposing a set of combination strategies that first pre-select models into either

quartiles or clusters on the basis of the distribution of past forecasting performance across

models, pool forecasts within each cluster and then estimate optimal combination weights

that are shrunk towards equal weights. These conditional combination strategies lead to

better average forecasting performance than simpler strategies in common use such as using

the single best model or averaging across all forecasting models or a small subset of these.

Elliott (2004) undertakes a simulation experiment where he finds that although shrinkage

methods always dominate least squares estimates of the combination weights, the perfor-

mance of the shrinkage method can be quite sensitive to the shrinkage parameter and that

none of the standard methods for determining this parameter work particularly well.

Given the similarity of the mean-variance optimization problem in finance to the forecast

combination problem, it is not surprising that empirical findings in finance mirror those in the

forecast combination literature. For example, it has generally been found in applications to

asset returns that sample estimates of portfolio weights that solve a standard mean-variance
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optimization problem are extremely sensitive to small changes in sample means. In addition

they are highly sensitive to variations in the inverse of the covariance matrix estimate, Σ̂−1.

Jobson and Korkie (1980) show that the sample estimate of the optimal portfolio weights

can be characterized as the ratio of two estimators, each of whose first and second moments

can be derived in closed form. They use Taylor series expansions to derive an approximate

solution for the first two moments of the optimal weights, noting that higher order mo-

ments can be characterized under additional normality assumptions. They also derive the

asymptotic distribution of the portfolio weights for the case where N is fixed and T goes to

infinity. In simulation experiments they demonstrate that the sample estimates of the port-

folio weights are highly volatile and can take extreme values that lead to poor out-of-sample

performance.

It is widely recognized in finance that imposing portfolio weight constraints generally

leads to improved out-of-sample performance of mean-variance efficient portfolios. For ex-

ample, Jagannathan and Ma (2003) find empirically that once such constraints are imposed

on portfolio weights, other refinements of covariance matrix estimation have little additional

effect on the variance of the optimal portfolio. Since they also demonstrate that portfolio

weight constraints can be interpreted as a form of shrinkage, these findings lend support to

using shrinkage methods as well.

Similarly, Ledoit and Wolf (2003) report that the out-of-sample standard deviation of

portfolio returns based on a shrunk covariance matrix is significantly lower than the standard

deviation of portfolio returns based on more conventional estimates of the covariance matrix.

Notice that shrinkage and trimming tend to work in opposite directions - at least if the

shrinkage is towards equal weights. Shrinkage tends to give more similar weights to all

models whereas trimming completely discards a subset of models. If some models produce

extremely poor out-of-sample forecasts, shrinkage can be expected to perform poorly if the

combined forecast is shrunk too aggressively towards an equal-weighted average. For this

reason, shrinkage preceded by a trimming step may work well in many situations.
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7.5 Limited time-variation in the combination weights may be

helpful

Empirical evidence on the value of allowing for time-varying combinations in the combination

weights is somewhat mixed. Time-variations in forecasts can be introduced either in the

individual models underlying the combination or in the combination weights themselves and

both approaches have been considered. The idea of time-varying forecast combinations goes

back to the advent of the combination literature in economics. Bates and Granger (1969)

used combination weights that were adaptively updated as did many subsequent studies

such as Winkler and Makridakis (1983). Newbold and Granger (1974) considered values

of the window length, v, in (47) and (48) between one and twelve periods and values of

the discounting factor, λ, in (50) and (51) between 1 and 2.5. Their results suggested

that there is an interior optimum around v = 6, α = 0.5 for which the adaptive updating

method (49) performs best whereas the rolling window combinations generally do best for

the longest windows, i.e., v = 9 or v = 12, and the best exponential discounting was found

for λ around 2 or 2.5. This is consistent with the finding by Bates and Granger (1969)

that high values of the discounting factor tend to work best. A method that combines a

Holt-Winters and stepwise autoregressive forecast was found to perform particularly well.

Winkler and Makridakis (1983) report similar results and also find that the longer windows,

v, in equations such as (47) and (48) tend to produce the most accurate forecasts, although

in their study the best results among the discounting methods were found for relatively low

values of the discount factor.

In a combination of forecasts from the Survey of Professional Forecasters and forecasts

from simple autoregressive models applied to six macroeconomic variables, Elliott and Tim-

mermann (2003) investigate the out-of-sample forecasting performance produced by different

constant and time-varying forecasting schemes such as (57). Compared to a range of other

time-varying forecast combination methods, a two-state regime switching method produces a

lower MSFE for four or five out of six cases. They argue that the evidence suggests that the

best forecast combination method allows the combination weights to vary over time but in a

mean-reverting manner. Unsurprisingly, allowing for three states leads to worse forecasting
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performance for four of the six variables under consideration.

Stock and Watson (2004) report that the combined forecasts that perform best in their

study are the time-varying parameter (TVP) forecast with very little time variation, the

simple mean and a trimmed mean. They conclude that “the results for the methods designed

to handle time variation are mixed. The TVP forecasts sometimes work well but sometimes

work quite poorly and in this sense are not robust; the larger the amount of time variation,

the less robust are the forecasts. Similarly, the discounted MSE forecasts with the most

discounting.... are typically no better than, and sometimes worse than, their counterparts

with less or no discounting.”

This leads them to conclude that “This “forecast combination puzzle” - the repeated

finding that simple combination forecasts outperform sophisticated adaptive combination

methods in empirical applications - is, we think, more likely to be understood in the context

of a model in which there is widespread instability in the performance of individual forecast,

but the instability is sufficiently idiosyncratic that the combination of these individually

unstably performing forecasts can itself be stable.”

7.6 Empirical Application

To demonstrate the practical use of forecast combination techniques, we consider an empirical

application to the seven-country data set introduced in Stock and Watson (2004). This data

comprises up to 43 quarterly time series for each of the G7 economies (Canada, France,

Germany, Italy, Japan, UK, and the US) over the period 1959.I — 1999.IV. Observations on

some variables are only available for a shorter sample. The 43 series include the following

categories: Asset returns, interest rates and spreads; measures of real economic activity;

prices and wages; and various monetary aggregates. The data has been transformed as

described in Stock and Watson (2004) and Aiolfi and Timmermann (2004) to deal with

seasonality, outliers and stochastic trends, yielding between 46 and 71 series per country.

Forecasts are generated from bivariate autoregressive models of the type

yt+h = c+A (L) yt +B (L)xt + �t+h, (82)

62



where xt is a regressor other than yt. Lag lengths are selected recursively using the BIC with

between 1 and 4 lags of xt and between 0 and 4 lags of yt. All parameters are estimated

recursively using an expanding data window. For more details, see Aiolfi and Timmermann

(2004). The average number of forecasting models entertained ranges from 36 for France,

through 67 for the US.

We consider three trimmed forecast combination schemes that take simple averages over

the top 25%, top 50% and top 75% of forecast models ranked recursively by means of the

forecasting performance up to the point in time of the forecast. In addition we report

the performance of the simple average (mean) forecast, the median forecast, the triangular

forecast combination scheme (38) and the discounted mean squared forecast combination

(50) with λ = 1 so the forecasting models get weighted by the inverse of their MSFE-values.

Out-of-sample forecasting performance is reported relative to the forecasting performance of

the previous best (PB) model selected according to the forecasting performance up to the

point where a new out-of-sample forecast is generated. This means that numbers below one

indicate better MSFE performance while numbers above one indicate worse performance

relative to this benchmark. The out-of-sample period is 1970Q1-199Q4.

Table 2 reports the results.15 This table shows results averaged across variables but not

across countries. We show results for four forecast horizons, namely h = 1, 2, 4 and 8. For

each country it is clear that the simple trimmed forecast combinations perform very well

and generally are better the fewer models that get included, i.e. the more aggressive the

trimming. Furthermore, gains can be quite large−on the order of 10-15% relative to the

forecast from the previous best model. The median forecast performs better on average than

the previous best model, but is generally worse compared to some of the other combination

schemes as is the discounted mean squared forecast error weighting scheme. Results are

quite consistent across the seven economies.

Table 3 shows results averaged across countries but for the four separate categories of

variables. The results suggest that the gains from combination tends to be greater for the

economic activity variables and somewhat smaller for the monetary aggregates. There is

15I am grateful to Marco Aiolfi for carrying out these calculations.
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also a systematic tendency that the forecasting performance of the combinations relative to

the best single model improves as the forecast horizon is extended from one-quarter to two

or more quarters.

How consistent are these results across countries and variables? To investigate this ques-

tion, Tables 4, 5 and 6 show disaggregate results for the US, Japan and France. Considerable

variations in gains from forecast combinations emerge across countries, variables and hori-

zons. Table 4 shows that gains in the US are very large for the economic activity variables

but somewhat smaller for returns and interest rates and monetary aggregates. Compared

to the US results, in Japan the best combinations perform relatively worse for economic

activity variables and prices and wages but relatively better for the monetary aggregates

and returns and interest rates. Finally in the case of France, we uncover a number of cases

where, for the forecasts of monetary aggregates, in fact none of the combinations beat the

previous best model.

8 Conclusion

In his classical survey of forecast combinations, Clemen (1989, p. 567) concluded that “Com-

bining forecasts has been shown to be practical, economical and useful. Underlying theory

has been developed, and many empirical tests have demonstrated the value of composite

forecasting. We no longer need to justify this methodology.”

In the early days of the combination literature the set of forecasts was often taken as

given, but recent experiments undertaken by Stock and Watson (2001, 2004) and Marcellino

(2004) let the forecast user control both the number of forecasting models as well as the

types of forecasts that are being combined. This opens a whole new set of issues: is it best

to combine forecasts from linear models with different regressors or is it better to combine

forecasts produced by different families of models, e.g. linear and nonlinear, or maybe

the same model using estimators with varying degrees of robustness? The answer to this

depends of course on the type of misspecification or instability the model combination can

hedge against. Unfortunately this is typically unknown so general answers are hard to come

by.
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Since then, combination methods have gained even more ground in the forecasting litera-

ture, largely because of the strength of the empirical evidence suggesting that these methods

systematically perform better than alternatives based on forecasts from a single model. Sta-

ble, equal weights have so far been the workhorse of the combination literature and have

set a benchmark that has proved surprisingly difficult to beat. This is surprising since−on

theoretical grounds−one would not expect any particular combination scheme to be domi-

nant, since the various methods incorporate restrictions on the covariance matrix that are

designed to trade off bias against reduced parameter estimation error. The optimal bias

can be expected to vary across applications, and the scheme that provides the best trade-off

is expected to depend on the sample size, the number of forecasting models involved, the

ratio of the variance of individual models’ forecast errors as well as their correlations and

the degree of instability in the underlying data generating process.

Current research also provides encouraging pointers towards modifications of this simple

strategy that can improve forecasting. Modest time-variations in the combination weights

and trimming of the worst models have generally been found to work well, as has shrinkage

towards equal weights or some other target requiring the estimation of a relatively mod-

est number of parameters, particularly in applications with combinations of a large set of

forecasts.
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Table 2: Linear Models: Out-of-sample forecasting performance of combination
schemes applied to linear models. Each panel reports the out-of-sample MSFE - rela-
tive to that of the previous best model using an expanding window - averaged across
variables, for different combination strategies, countries and forecast horizons (h).

h=1

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.88 0.89 0.90 0.90 0.93 0.90 0.91 1.00
UK 0.91 0.91 0.92 0.92 0.93 0.91 0.92 1.00
Germany 0.92 0.93 0.93 0.92 0.95 0.92 0.92 1.00
Japan 0.93 0.94 0.94 0.94 0.97 0.94 0.94 1.00
Italy 0.90 0.90 0.91 0.91 0.93 0.90 0.91 1.00
France 0.93 0.93 0.94 0.94 0.96 0.93 0.94 1.00
Canada 0.91 0.91 0.92 0.92 0.94 0.91 0.92 1.00

h=2

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.85 0.86 0.86 0.86 0.88 0.86 0.86 1.00
UK 0.90 0.90 0.90 0.91 0.92 0.90 0.91 1.00
Germany 0.90 0.90 0.91 0.91 0.93 0.90 0.91 1.00
Japan 0.90 0.91 0.92 0.92 0.94 0.91 0.92 1.00
Italy 0.89 0.89 0.89 0.89 0.90 0.89 0.89 1.00
France 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
Canada 0.90 0.90 0.91 0.90 0.94 0.90 0.90 1.00

h=4

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.87 0.87 0.87 0.87 0.90 0.87 0.87 1.00
UK 0.86 0.86 0.86 0.86 0.87 0.86 0.86 1.00
Germany 0.90 0.90 0.91 0.91 0.92 0.90 0.91 1.00
Japan 0.91 0.93 0.95 0.96 0.98 0.94 0.97 1.00
Italy 0.86 0.85 0.85 0.85 0.86 0.85 0.85 1.00
France 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
Canada 0.85 0.85 0.86 0.86 0.88 0.85 0.86 1.00

h=8

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.85 0.85 0.86 0.86 0.88 0.85 0.86 1.00
UK 0.88 0.88 0.89 0.89 0.91 0.88 0.89 1.00
Germany 0.90 0.91 0.91 0.91 0.92 0.90 0.91 1.00
Japan 0.85 0.85 0.85 0.85 0.86 0.85 0.85 1.00
Italy 0.89 0.89 0.90 0.90 0.91 0.89 0.90 1.00
France 0.90 0.90 0.90 0.90 0.92 0.90 0.90 1.00
Canada 0.86 0.87 0.87 0.87 0.88 0.86 0.86 1.00



Table 3: Linear Models Out-of-sample forecasting performance of combination
schemes applied to linear models. Each panel reports the out-of-sample MSFE -
relative to that of the previous best model using an expanding window - averaged
across countries, for different combination strategies, categories of economic vari-
ables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.91 0.92 0.92 0.92 0.94 0.92 0.92 1.00
h=2 0.89 0.89 0.89 0.89 0.91 0.89 0.90 1.00
h=4 0.88 0.88 0.88 0.88 0.90 0.88 0.89 1.00
h=8 0.87 0.88 0.88 0.88 0.90 0.88 0.88 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.92 0.92 0.92 0.92 0.94 0.92 0.92 1.00
h=2 0.89 0.90 0.90 0.90 0.91 0.90 0.90 1.00
h=4 0.88 0.89 0.89 0.89 0.91 0.88 0.89 1.00
h=8 0.87 0.87 0.87 0.87 0.89 0.87 0.87 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.89 0.91 0.92 0.93 0.95 0.91 0.93 1.00
h=2 0.86 0.88 0.89 0.89 0.93 0.88 0.90 1.00
h=4 0.85 0.88 0.89 0.89 0.93 0.88 0.90 1.00
h=8 0.87 0.89 0.90 0.91 0.95 0.89 0.90 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.90 0.91 0.91 0.91 0.93 0.91 0.91 1.00
h=2 0.89 0.89 0.89 0.89 0.91 0.89 0.89 1.00
h=4 0.86 0.86 0.87 0.87 0.88 0.86 0.87 1.00
h=8 0.87 0.86 0.86 0.86 0.88 0.86 0.86 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.91 0.92 0.93 0.93 0.96 0.92 0.93 1.00
h=2 0.89 0.89 0.89 0.89 0.90 0.89 0.89 1.00
h=4 0.90 0.90 0.90 0.89 0.90 0.89 0.89 1.00
h=8 0.90 0.90 0.90 0.90 0.91 0.90 0.90 1.00



Table 4: Linear Models: US Out-of-sample forecasting performance of combina-
tion schemes applied to linear models. Each panel reports the out-of-sample MSFE
- relative to that of the previous best model using an expanding window - aver-
aged across variables, for different combination strategies, categories of economic
variables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.88 0.89 0.90 0.90 0.93 0.90 0.91 1.00
h=2 0.85 0.86 0.86 0.86 0.88 0.86 0.86 1.00
h=4 0.87 0.87 0.87 0.87 0.90 0.87 0.87 1.00
h=8 0.85 0.85 0.86 0.86 0.88 0.85 0.86 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.89 0.89 0.89 0.89 0.91 0.89 0.89 1.00
h=2 0.87 0.87 0.88 0.88 0.90 0.87 0.88 1.00
h=4 0.90 0.90 0.90 0.90 0.92 0.90 0.90 1.00
h=8 0.86 0.86 0.86 0.86 0.87 0.86 0.86 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.86 0.90 0.91 0.92 0.94 0.90 0.92 1.00
h=2 0.77 0.80 0.81 0.82 0.87 0.80 0.82 1.00
h=4 0.80 0.83 0.84 0.84 0.90 0.83 0.84 1.00
h=8 0.82 0.86 0.88 0.90 0.98 0.86 0.88 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.86 0.86 0.87 0.87 0.90 0.86 0.87 1.00
h=2 0.84 0.85 0.84 0.85 0.86 0.84 0.85 1.00
h=4 0.83 0.83 0.83 0.82 0.83 0.83 0.82 1.00
h=8 0.80 0.79 0.79 0.79 0.81 0.79 0.79 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.92 0.95 0.97 0.98 1.03 0.96 0.98 1.00
h=2 0.88 0.88 0.87 0.87 0.88 0.87 0.88 1.00
h=4 0.87 0.88 0.88 0.88 0.90 0.88 0.88 1.00
h=8 0.93 0.92 0.93 0.93 0.94 0.92 0.93 1.00



Table 5: Linear Models: Japan Out-of-sample forecasting performance of com-
bination schemes applied to linear models. Each panel reports the out-of-sample
MSFE - relative to that of the previous best model using an expanding window - av-
eraged across variables, for different combination strategies, categories of economic
variables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.93 0.94 0.94 0.94 0.97 0.94 0.94 1.00
h=2 0.90 0.91 0.92 0.92 0.94 0.91 0.92 1.00
h=4 0.91 0.93 0.95 0.96 0.98 0.94 0.97 1.00
h=8 0.85 0.85 0.85 0.85 0.86 0.85 0.85 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.94 0.95 0.96 0.96 1.00 0.95 0.96 1.00
h=2 0.92 0.93 0.93 0.93 0.95 0.93 0.94 1.00
h=4 0.91 0.93 0.94 0.95 0.98 0.93 0.96 1.00
h=8 0.81 0.81 0.82 0.82 0.83 0.81 0.82 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.97 0.99 1.00 1.00 1.02 0.99 1.00 1.00
h=2 0.91 0.93 0.94 0.95 0.96 0.93 0.95 1.00
h=4 0.99 1.00 1.03 1.05 1.06 1.01 1.06 1.00
h=8 0.89 0.88 0.88 0.89 0.89 0.88 0.88 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.90 0.92 0.93 0.92 0.94 0.92 0.92 1.00
h=2 0.91 0.93 0.93 0.93 0.97 0.92 0.93 1.00
h=4 0.90 0.95 0.98 0.99 1.03 0.96 1.00 1.00
h=8 0.90 0.90 0.89 0.89 0.91 0.89 0.90 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.89 0.90 0.89 0.89 0.91 0.89 0.89 1.00
h=2 0.85 0.85 0.85 0.85 0.86 0.85 0.85 1.00
h=4 0.87 0.87 0.87 0.87 0.88 0.87 0.86 1.00
h=8 0.84 0.83 0.83 0.83 0.83 0.83 0.83 1.00



Table 6: Linear Models: France Out-of-sample forecasting performance of com-
bination schemes applied to linear models. Each panel reports the out-of-sample
MSFE - relative to that of the previous best model using an expanding window - av-
eraged across variables, for different combination strategies, categories of economic
variables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.93 0.93 0.94 0.94 0.96 0.93 0.94 1.00
h=2 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
h=4 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
h=8 0.90 0.90 0.90 0.90 0.92 0.90 0.90 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.94 0.94 0.95 0.94 0.97 0.94 0.95 1.00
h=2 0.89 0.89 0.89 0.89 0.89 0.89 0.89 1.00
h=4 0.89 0.89 0.89 0.89 0.90 0.89 0.89 1.00
h=8 0.89 0.89 0.90 0.89 0.91 0.89 0.90 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.80 0.80 0.81 0.82 0.85 0.80 0.83 1.00
h=2 0.75 0.76 0.77 0.77 0.79 0.76 0.77 1.00
h=4 0.78 0.77 0.77 0.78 0.78 0.77 0.77 1.00
h=8 0.84 0.84 0.84 0.84 0.86 0.83 0.84 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.96 0.96 0.96 0.97 0.98 0.96 0.97 1.00
h=2 0.90 0.90 0.91 0.90 0.92 0.90 0.90 1.00
h=4 0.86 0.85 0.85 0.85 0.86 0.85 0.85 1.00
h=8 0.91 0.90 0.90 0.91 0.93 0.90 0.91 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.88 0.89 0.91 0.91 0.94 0.90 0.91 1.00
h=2 0.85 0.86 0.86 0.87 0.90 0.86 0.87 1.00
h=4 1.06 1.07 1.08 1.09 1.11 1.07 1.09 1.00
h=8 0.99 1.01 1.01 1.01 1.05 1.00 1.01 1.00




